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Abstract

We introduce a method that combines Euclidean distancing and OLS techniques to
project synthetic capitalization rate indices (`SCXs') for metropolitan statistical areas in
the US. SCXs are projected independently of market prices, asset speci�c characteristics
and geographic location (ex-ante). In contrast to market cap rates, driven by geographic
proximity and market comparables, our new method is driven by economic proximity.
We �nd SCXs provide better forward guidance than market cap rates for commercial
real estate (`CRE') defaults and CRE values before and during the Covid pandemic.
Our method establishes CRE benchmark cap rate indices across property types that
explicitly connect CRE valuation at the MSA level to macroeconomic indicators through
economic proximity.
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Introduction

`Location, location, location' is an often heard phrase commonly used in the commercial real

estate (`CRE') industry to emphasize the notion that the central de�ning characteristic of

property value is linked inextricably to its geographic location. This paper calls into question

the validity of this phrase and common perspective. Our research suggests that the term

location, as used in common practice, is too coarse a measure for model driven, market

price independent `fair value' estimation. Instead, we �nd our technique based on economic

proximity, not geographic proximity, generates better insights into CRE risk and better

insights into the future direction of CRE values. We formalize this perspective through

the introduction of a simple model which combines elements of Euclidean distancing and

ordinary least squares (`OLS') estimation. Our technique yields the production of synthetic

capitalization rate indices (`SCXs') across all property types at the MSA level. Our model

makes explicit the in�uence of key macroeconomic indicators onto `fair' investor expectations

of CRE in the channel of the cap rate with SCXs. Since SCXs appear to provide better

insights than market cap rates into value and risk of properties in our study, we claim they

can be interpreted as a new set of benchmark indexed measures of CRE health in the US.

This is new to the literature.

Recall, CRE property is an income producing asset class whose income is derived from

revenue paid by tenants for the use of the property's space. In standard CRE valuation

practice, a property's current net operating income (`NOI') interacts with a property's

capitalization rate (`cap rate') in the CRE valuation identity, V = NOI
cap rate

, as noted in

Brueggeman and Fisher (2019). This identity is an adaptation of the model for dividend

paying stocks introduced in Gordon and Shapiro (1956) and is frequently used in static

and proforma CRE valuation. Asset characteristics such as building structure, divisions of

rentable space, rents, lease terms, and occupancy rates all in�uence the channel of NOI. In

contrast to the property NOI (numerator), the cap rate (denominator) in the CRE valuation

identity is inherently less tethered to the property speci�c characteristics, and less directly

observable. Apart from instances with an observed CRE value, V , and disclosed NOI at

the point of sale or �nancing, cap rates are not as readily observed as property speci�c
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characteristics.

Additionally, cap rates based on market comparables from recent sales in a local submarket

are often used as benchmarks to impute a similar CRE property value, V , given an observed

(or even estimated) NOI. These benchmarks may be geographically and temporally proximate

to the subject property, and may implicitly re�ect similar �nancial characteristics, at the

time of the �nancial event at the local level. Additionally, cap rates are also revealed ex-post,

following observation of a CRE property sale or re�nancing, with NOI reported. As such, a

revealed market cap rate for a property may by its nature obscure more elemental drivers

of CRE risk hidden by the market's valuation process which itself may su�er from delays in

reporting, delays in appraisals, and infrequent comparable sales data.

Repeat sales indices and hedonic price indices for CRE are two generally accepted

methods for estimating benchmark values for CRE as noted in Geltner (2015). Both methods

are exposed to a variety of data driven challenges such as reporting delays. On the one hand,

cap rates by their nature must contemplate the future prospects for a property. On the other

hand, cap rates may be more market and incentive driven as re�ected in observed sales. It is

also not necessarily binary, as the cap rate may contemplate both future prospects for CRE

value as well market driven incentives from actors such as lenders, appraisers and property

investors. Parsing issues between repeat sales and hedonic index construction is not the focus

of this paper. Instead, we propose a novel quantitative method for cap rate construction

that utilizes signals of economic similarity, statistically, to project SCXs as quantitative fair

value estimates of CRE value independent of market price.

In this paper, we �nd geographically disparate macroeconomic signals, projected by our

method into MSA level SCXs, to statistically provide insights into subject property risk at the

MSA level. The process for projection that we introduce accomplishes both: (i.) production

of replicable, transparent, and statistically signi�cant benchmark valuation indices for CRE

(the SCXs), and (ii.) discloses the application of SCX benchmarks to be better at risk and

fair value estimation of CRE than actual market cap rates.

We �rst construct sixty multivariate OLS with the dependent variables observable cap

rates at National, State and Regional levels (together, `supralocations') reported by the

National Council of Real Estate Investment Fiduciaries (`NCREIF') from 1991 thru 2015
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and the independent variables �ve macroeconomic variables (house price indices (`HPI'),

unemployment rates (`UE'), the corporate bond credit slope (equal to the di�erence in yields

to maturity for Baa and Aaa rated corporate bonds), the Freddie Mac (`FHLMC') conforming

30-year mortgage rate, and the CRE chargeo� rate. Next, we apply Euclidean distancing

techniques to formulate the new measure of economic proximity, dist(k, j)t, which includes

house price indices and unemployment rates, both of which are observable at both MSA and

supralocations. We then formulate 402 MSA level cap rates using OLS selecting period by

period the constants and coe�cients on the right hand side corresponding to the minimizing

economic proximity and then interacting those selected coe�cients with observable MSA-

level and National-level macroeconomic data. This produces a projected time series of MSA

level SCXs for 402 MSAs over the period 1991 thru 2015. We perform a battery of robustness

tests of our methodology which demonstrate very good �t and high explanatory power for

macroeconomic variables distilled into SCXs. The tests suggest no need to alter our method.

Finally, we construct statistically signi�cant linear estimates of the projected SCXs from 2015

thru 2022 to establish 1-year forward estimated out of sample SCXs before and during the

Covid pandemic period when NCREIF data was not made available to us. Our study yields

three main results.

First, we create SCXs at the MSA level which do not exist in nature. We validate the

SCX model with tests of a.) multicollinearity, b.) Shannon Entropy scoring (introduced

by Shannon (1948)), c.) leave one out cross validation, and d.) pairwise supralocation

similarity. We �nd our distancing methodology to be stable across geographically disparate

supralocations in the US that are used to create SCXs and thus con�rm the methodological

soundness of our SCX projection method and the values produced.

Second, SCXs provide greater insights into lifetime CRE default risks than actual cap

rates observed for properties at origination. This claim is supported by logistic regressions

applied to 25101 CRE mortgages totaling $700 billion over the period 2000-2015. We �nd

SCXs to be highly signi�cant predictors of CRE default, and comparatively more so than

actual cap rates. This is especially the case for the lifetime risks of CRE default in regions

outside of central business districts (`CBDs') where the majority of CRE loans in the US

are underwritten. This supports our view that market cap rates obscure CRE risks, while
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elements of the macroeconomy, distilled into SCXs, disclose CRE risks more accurately.

We �nd substantial di�erences in valuations based upon SCXs compared with those based

on actual cap rates totaling about $77 billion (about 11% of market value of properties)

with SCXs exhibiting more conservative and more accurate property value assessments than

actual cap rates even divorced from property speci�c characteristics.

Third, using a linear estimate of SCXs we provide a reliable benchmark for CRE values

in 1-year forecasts before and during the Covid pandemic. By computing out of sample

projections for the MSA level SCXs, we are able to secure insights into CRE values re�ective

of emerging macroeconomic data during the pandemic. We �nd considerable variation

in this period between the top 25 MSAs, which have 50% of the total eligible workforce,

compared with the rest of the country. The exodus away from urban centers (in the top

25 MSAs) during Covid, as noted in Whitaker (2021), appear to prompt a more severe

compression in CRE values (increases in SCXs) compared with remainder of the country.

More recent reversals in migration (return to cities) is also captured by our method, resulting

in projected increases in CRE values (decreases in SCXs) through June 2022. Our projected

benchmarks of CRE values during the Covid era are in line with some other projections in

the literature. They provide a novel, and transparent, reconciliation between macroeconomic

e�ects and CRE valuation. The stability of SCX estimations, precision in default and

valuation estimation, and observable di�erences in CRE valuation historically, support these

forward projections during the Covid pandemic, though further research can be conducted.

Our paper makes at least four contributions to the literature. First, our approach

makes explicit the bene�t of using disparate macroeconomic indicators for CRE valuations

independent of market prices. This re�nement in CRE valuation contributes to the fair

value literature. Second, the �ndings of our study suggest that the geospatial term `location'

is, in the economic terms determined by our model, actually a statistical aggregation of

macroeconomic in�uences which are not bounded to geographic location of the property, ex-

ante. This represents a contribution to the �eld of urban economics using a cross-disciplinary

and unique quantitative approach applied to risk based pricing of CRE. Third, SCXs which

do not exist in nature represent a new, reliable, readily-producible, set of benchmark indices

of CRE health and valuation. As such our paper also contributes to the literature on
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indexing providing a readily observable measure which may be used for benchmark pricing

within MSAs in the current period estimates representing forecasts out one year. Finally,

fourth, we claim that the information content contained in SCXs represent a new set of

`hard information', in the sense of Liberti and Peterson (2018), for the CRE market. Given

the corroboration of our projections with stated claims of changes in property values in the

midst of the Covid pandemic, such hard information holds promise for further research, use

and policy for CRE with SCXs a useful indicator for property valuation at the MSA, State

and National level. In conjunction, the large research question as to whether `Does location

matter for CRE?' is addressed in this paper with the validated response of `Not the way you

might commonly think.'

The remainder of this article is organized as follows. Section 1 provides a short literature

review. Section 2 discusses the data used in our study. Section 3 describes the methodology

for SCXs. Section 4 discusses the validation of our model. Section 5 validates the use of SCXs

in valuation and lifetime default estimation of CRE loans. Section 6 provides application

of SCXs during the Covid pandemic. Section 7 summarizes with suggestions for future

research. An Online Appendix is available upon request providing extensive supplementary

robustness checks, discussions, and long form tables documenting �ndings into SCX creation

and implications of testing results at the MSA level.

1 Literature Review

People live (Multifamily) and work (O�ce), shop (Retail), relax and travel (Hotel), and

are served indirectly by (Industrial) CRE in most aspects of their daily lives in the US. As

noted in Fuller (2020), even excluding new construction activity, existing US CRE stock

of 49.6 billion square feet supported 4.5 million American jobs, generating a total economic

contribution to US GDP of $464.4 billion in salaries and wages. Additionally, recent estimates

of the total value of US CRE property range between $14.4 and $17.0 trillion (NAREIT

(2020)), with total US CRE debt outstanding equal to $4.7 trillion (Federal Reserve (2020)

and ARES (2020)).

In capital markets, about $1.9 trillion in US CRE securities are found in the investment
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portfolios of insurance companies, pension funds, investment managers, hedge funds, and

individuals in the US. This aggregate consists of Real Estate Investment Trusts, (`REITs'),

which have a market capitalization of about $1.3 trillion with average daily trading volume

(`ADV') of $8.7 billion while and commercial mortgage backed securities, (`CMBS'), which

have an outstanding principal balances of about $600 billion in the US exhibited ADVs of

$0.84 billion. These �gures are dwarfed, for example, by the agency residential mortgage

backed securities market with $9.9 trillion outstanding and ADV of $289.8 billion.1

Given the size of CRE across multiple facets, it is surprising that it remains relatively

opaque as an asset class in terms of valuation.

Measures to track CRE pricing may su�er due to the heterogeneity of the CRE assets and

infrequency of their trading, relative to say publicly traded securities, as noted in Geltner

(2015). A compounding e�ect of opaque valuation may translate into asset illiquidity

observed in related debt and equity instruments. There we observe muted frequency of

securities trading compared with in other more liquid markets. For example, the US Census

and US Energy Information Administration, report that residential properties outnumber

CRE properties by at least a factor of 14x in the US. Additionally, the average securitized

CRE mortgage size is 30-40x the average size of US residential mortgages.

In the absence of frequent transactions, which often reveal prices, CRE asset values

remain inherently opaque. There is no secondary market for building assets; they are not

traded on public exchanges and they exhibit infrequent transactions which contribute to

their highly illiquid pro�le. When comparing the issuance volumes of residential and CRE

securities as described in Killian and Cox (2016), as well as their relative trading frequency, as

seen in He and Mizrach (2017), we see substantially lower quantities of observable transaction

information for CRE securities investors than are seen in the residential sector. These

discrepancies in market driven information content are further con�rmed in Marcato and

Nanda (2016) who �nd the residential sector to be signi�cantly more responsive to changes

in investor sentiment as captured in prices, compared with the non-residential sector. At the

loan level, Titman, Tompaidis and Tsyplakov (2005) �nd a considerable portion of CRE loan

risk premia may be associated with illiquidity of the securing asset and a lack of integration

1See NAREIT (2020) and SIFMA (2021).
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between real estate and more developed corporate credit markets. While the recording

of trading in CRE securitizations is improving the information content �ow to enhance

liquidity as discussed in Holli�eld, Neklyudov and Spatt (2017), information de�cits within

such revealed prices in CRE transactions may still confound transparency and underscore

opacity in the CRE market for hard building assets.

Findings of such CRE market opacity are also supported in the literature on the equity

side focusing on a disconnect between investor expectations and REIT portfolio valuations

as discussed in Pavlov, Steiner and Wachter (2018). This aggregation e�ect is also noted

by Bond and Mitchell (2011) on the debt side of the capital structure for U.K. real estate

derivatives. Misspeci�cation of underlying risks also a�ects the liquidity of instruments as

found Christopoulos (2017) who suggests a possible aggregation e�ect CMBS index prices

(`CMBX'). Similarly, Christopoulos and Jarrow (2018) provide evidence of market mispricing

of CRE debt in securitizations, which may also suggest imprecise CRE risk assessment.

Recently, Gri�n and Priest (2020) claim CRE values may be in�uenced by systemic use of

in�ated NOI in CMBS lending practice which may have lead to overvaluation of CRE.

Cap rates which play a central role in valuation of CRE, are necessarily imbued with the

market's expectations of future real estate growth. However, the expectations of such future

growth may be misspeci�ed as noted in Sivitanides, Southard, Torto and Wheaton (2001).

Recent cap rate studies by Chervachidze, Costello and Wheaton (2009), Liang (2013), and

Seagraves and Wiley (2016) provide innovations into cap rate risk composition. While these

works advance the literature in querying into implications of cap rate use in valuation and

risk components of cap rates, none of these studies project cap rate indices independent of

market pricing which is of central importance to our paper.

Our methodology clari�es the relationship between some macroeconomic variables and

CRE valuation. SCXs are created from macroeconomic factors, independent of market

pricing and in this way are a model or `fair value' estimate. Our approach di�ers from the

motivating indexing literature of Bailey, Muth and Nourse (1963), Case and Shiller (1987)

and Fisher (2000) who do not use distancing techniques for indexing. Our methodology is

not, ex ante, geographically restricted. If an MSA and supralocation pair are geographically

distant from one another (e.g. the MSA of Tallahassee, FL compared with the supralocation
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of the State of Alaska) but, nevertheless, exhibit similar variation in their macroeconomic

signals, we claim that such similarities should have similar in�uences on CRE property

valuation, regardless of geographic distance. This insight is central to our method. Matches

based upon economic proximity, which is temporal and data driven, may vary considerably

from period to period. Indeed the richness of our approach is established through our

ability to methodically scan the nation for signals of economic similarity between MSAs and

supralocations and to then project MSA level SCXs based upon that similarity.

In so doing, our approach inherently challenges the primacy of property geographic

location at the MSA level in valuation as discussed in Grissom, Hartzell and Liu (1987) and

Wheaton and Nechayev (2005). Our results suggest that location at the MSA, State and

National level in the traditional sense matters much less than is commonly thought. Instead,

we claim that macroeconomic in�uences appear to matter much more than previously considered

in CRE property valuation in indexed form at the MSA, State and National levels across

all property types as demonstrated by our work. Earlier work in the real estate literature

does not fully disentangle the geographic in�uence from the economic in�uence in CRE

valuation. Hartzell, Shulman and Wurtzebach (1987) and Mueller (1993) identify economic

diversi�cation through reclassi�cation of geographic regions based on industry representation.

However, those reclassi�cations are inherently geographic and do not partition economic

proximity from geographic proximity. In contrast, our work does disentangle these in�uences.

Additionally, recent work by Chegut, Eichholtz and Rodrigues (2015), Hyun and Milcheva

(2018) and Silver (2016) suggest geographic proximity is driving the idiosyncrasy in valuation

of CRE assets. Our approach utilizes geographic distinctions with a freer economic con�guration

that supersedes geographic proximity.

2 Data

This section discusses the data we use in our study to project SCXs. To project these

measures we use both public and private information. Both sets of data are broadly utilized

by market actors. Wherever possible we preserve the integrity of the data in its raw form

consistent with the way in which it is absorbed in common practice.
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2.1 Public data

The public data we use to capture macroeconomic in�uences on CRE are: HPI, UE, the

corporate bond credit slope, the FHLMC conforming 30-year mortgage rate, and the CRE

chargeo� rate. HPI are reported by the FHFA. UE and able workforce are reported by the

Bureau of Labor Statistics (`BLS'). The credit slope, mortgage rate and CRE chargeo� rate

are reported by the Federal Reserve Board as captured in the FRED Economic Database

of the St. Louis Federal Reserve2. The selection of these speci�c data is purposeful.

First, capturing public data in�uences on market actors decision-making requires that such

information be readily observable and in the form in which it is transmitted. Each of the

variables we have selected satisfy this criteria. Second, we want prior continuity with the

literature3 that utilize macroeconomic variables to describe the impact debt instruments.

Third, for our distancing technique to be implemented, we require that the macroeconomic

variables be readily observable at both the supralocational levels and the MSA levels and

used by market actors. HPI and UE satisfy those criteria and thus are selected for the

distancing procedures described in Section 3.

We capture all public data from 1990-2021 on a quarterly basis. HPI and UE are reported

at National, State, and 402 MSA levels of granularity, while the credit slope, mortgage rate

and CRE chargeo� rate are reported only at the National level. HPI values are converted into

simple nominal returns. UE and CRE chargeo� rates are expressed as annual percentages.

The credit slope between Baa and Aaa rated corporate bond yields to maturity is converted

to basis points (`bps'). The mortgage rate is expressed as an annualized percent rate of

interest. We also use quarterly observations of the Dow Jones Industrial Average (`DJIA')

which were captured from Yahoo! Finance. We also utilize the VIX volatility index as

reported by the Chicago Board Options Exchange.

2See https://fred.stlouisfed.org/
3See Yan, Xie, Shi and Wu (2008), Liang (2013) and Figlewski, Frydman and Liang (2012).
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2.2 Private data

There are two types of private data: NCREIF and Intex. They are used in a variety of ways

in projecting and validating SCXs as described in the text.4

The NCREIF sample spans 1991-2015. Since 1977, NCREIF has provided quarterly

CRE asset valuation data reported by member institutional �duciaries with property value

estimations lagging by 1 quarter (3-months). NCREIF's regular reporting re�ects institutional

valuations on more than 35000 CRE properties totaling several trillions of US dollars.5 The

data is reported quarterly and re�ects actual sale prices and marked-to-market valuations by

the largest commercial real estate property holders in the United States including: pension

funds, commercial banks, investment banks, and life insurance companies. NCREIF indices

have been widely used in academic studies for more than twenty-years, as described in Diehl

(1993) and others. However, problems with NCREIF's frequency of reporting and smoothing

of such data as noted in Clayton, Geltner and Hamilton (2001) partially motivates our work.

NCREIF returns are captured at the State and National levels for each of 8 mutually exclusive

and exhaustive Regional partitions of the US: East North Central, Mideast, Mountain,

Northeast, Paci�c, Southeast, Southwest, and West North6 and 6 property types: Industrial,

Lodging, Multifamily, O�ce, Retail and Other.

[Insert Table 1 about here]

The Intex reporting period spans 2007-2015. This includes reported loan level information

(Table 1) from Intex for loans with origination dates spanning 2000-2015 on 25101 properties

whose mortgages serve as collateral for 175 CMBS transactions. We use these data in

comparative default and valuations assessments. The total balance of the private loan data

at origination was $389 billion with property values at the point of origination totaling

approximately $700 billion. The average loan size at origination was about $15mm. This

sample represents 1/3 of the CMBS universe and 10% of all CRE properties in the US.

Of these loans, 1013 totaling about $15 billion, defaulted over the period of 2007 to 2015.

Defaults in our study are de�ned as instances where loan payments are terminated and

4Private data was provided by an anonymous institutional investor with ~$0.7 trillion AUM.
5See https://www.ncreif.org/.
6The partitioning of US states is shown in Section 1 of the Online Appendix (available on request).
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where a liquidation of the securing property occurred as indicated by a State of Real Estate

Owned/Foreclosure. The private loan level data includes zip code level information and

property cap rates at origination allowing for grouping by CBD and non-CBD location

classi�cation. Table 2 summarizes some statistics corresponding to the 1013 defaulted loans

from Intex and juxtaposes those data with their corresponding cap rates SCXs.7

[Insert Table 2 about here]

3 The Model

This section presents the methodology to project SCXs at the MSA level using a technique

that utilizes OLS and selection based on economic proximity.

3.1 Background: Capitalization rates

Cap rates are applied throughout the CRE industry to determine a benchmark estimate

of the value of a property, and ex-post to record the relationship between current8 NOI

and property value following a sale transaction and in ongoing monitoring of the value

of the property through time. It is well known in the literature and practice, as noted

by Titman (2014) and Brueggeman and Fisher (2019), that cap rates may be interpreted

as an application of the Gordon Growth model for dividend paying stocks, introduced by

Gordon and Shapiro (1956). In the Gordon Growth framework, the observable price, P0,

of a dividend paying stock may be expressed as, P0 = D0

r−g with D0 the current dividend,

r the rate of return on the stock and g the growth rate of dividends. In the CRE context

NOI, O0, is substituted for the dividend D0 and the property value, V0, is substituted for

the stock price P0. Following Brueggeman and Fisher (2019), the investor's rate of return

on the property, r, and the expected growth rate of NOI, g, allows us to express the cap rate

C0 = r − g, such that

V0 =
O0

C0

∴ C0 =
O0

V0
(1)

7For greater detail these default data are organized by CBDs and non-CBDs as found in Section 1 of the
Online Appendix (available on request).

8In proforma analyses, growth rates may be applied to current NOI, a�ecting NOI levels projected into
the future and these too may be asset speci�c.
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Cap rates and both expected rates of return r and implied NOI growth rates, g, are subject

to investor interpretation at any given time t. In this work, we do not investigate into the

components of the cap rate, r and g which is left to other work and not our focus. Rather, we

introduce a new method resulting in the projection of CRE valuation benchmark indices as

`all-in' cap rates at the MSA level. In particular, we project the cap rate (C0, the left-hand

side of Eq. (1)) independent of the right-hand side O0

V0
. The approach is statistical and the

projected cap rates represent benchmark health indices for CRE (consistent with NCREIF

reporting).

3.2 Step 1: Computing NCREIF cap rates

We begin by computing the NCREIF cap rate indices, using the NCREIF data across all

property types which is also done and published by NCREIF in many studies. We use values

for O and V as for all loans in the �duciary portfolios for each time t. These aggregates are

partitioned by supralocation, property-type and time in the sample data. Consistent with

NCREIF (and others), we too compute an all property-type cap rate index. We adjust Eq.

(1) with the following notation. Let j ∈


1...51 = Fifty-one (51) total State regions

52 = One (1) total US National region

53...60 = Eight (8) total NCREIF regions

represent distinct

geographic supralocations; t ∈ [1, 95] the consecutive quarters from Q4 1991 to Q2 2015; and

p ∈



1 = Industrial (IN)

2 = Lodging/Hotel (LO)

3 = Multifamily (MF)

4 = O�ce (OF)

5 = Other (OT)

6 = Retail (RT)

the distinct CRE property types. For each location j, at each time

t, across all property types p, each NCREIF indexed NOI, O, is given by

Oj,t =
6∑
p=1

Oj,t,p (2)

and each observed NCREIF indexed property value, V , is given by

Vj,t =
6∑
p=1

Vj,t,p (3)
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giving the NCREIF indexed cap rate for the time t, j-th supralocation as

Cj,t =
Oj,t

Vj,t
(4)

We compute Cj,t for each j ∈ [1, 60] geographic supralocation for all times t resulting in 60

distinct NCREIF cap rate time series.

[Insert Figure 1 about here]

Figure 1 depicts 4 of 60 NCREIF cap rate time series from Eq. (4) for: j = 35 (State of

New York), j = 44 (State of Texas), j = 52 (US-Nation), and j = 55 (NCREIF Region of

Northeast).9 We use these 60 series of NCREIF cap rates, Cj,t, as dependent variables in

the OLS in Section 3.3.

Finally, note that for stabilized properties with existing history of NOI and tenancy, the

O�ce of the Comptroller of the Currency (`OCC') as noted in OCC (2017) advise the use

of current NOIs instead of forecasted NOIs. Since the entirety of our sample from both

NCREIF and Intex are based on stabilized properties, we follow the recommendation of the

OCC, and the CREFC (2018), and Trepp (2018) and use current NOIs in Eq. (1) to calculate

NCREIF indexed cap rates as well as the property speci�c cap rates from the Intex data. We

will use these computed cap rates compare to our SCX cap rate measures in the valuation

and default analyses in Section 5.

3.3 Step 2: Selecting lead time of covariates

It is well known that the macroeconomy leads CRE (or, equivalently, CRE lags the macroeconomy)

as noted for example in NAR (2006), Warren (2010), Geltner (2015) and Hill and Steurer

(2020), among others. The lag of CRE values may re�ect property speci�c issues related to

lease structures for tenants which may result in below or above market NOIs. Additionally,

reporting lags from price indices due to lags in appraisals and the time to execute them

properly may also contribute to delay in valuation estimates of CRE. Finally, the heterogeneity

9Section 1 of the Online Appendix (available on request) provides summary statistics for all 60 NCREIF
actual cap rate time organized by their supralocations.
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of the assets and infrequency of observed prices as found in securities markets make extrapolation

from comparable assets challenging and obscure con�dent valuation in the absence of transactions

in current periods.

We have to make a modeling choice that re�ects economic intuition while also capturing

a reasonable lead time. Consider the following regression for the US.

CUS, t+n = αj + β1,USHPIUS, t + β2,USUEUS, t + β3,USCreditSlopeUS,t

+β4,USMtgRateUS,t + β5,USCREchgo�US,t + εUS,t
(5)

Since the forecast literature recommends no more than 12 months forward, we consider the

results of �ve regressions in Eq (5) computed with cap rate leads of n ∈ [0, 4] quarters10.

The summary results of the �ve regressions are provided in Table 3.

[Insert Table 3 about here]

The F-tests indicate statistical signi�cance for all regressions, and the regressions exhibit

similar signs across covariates with similar Adjusted R-squared values ranging from 0.78 to

0.80. The signs of the covariates are also economically intuitive. Higher cap rates correspond

to lower house prices, higher unemployment, lower mortgage rates, and lower commercial

real estate chargeo� rates. The creditslope, which is only signi�cant in the 4 quarter lag

of the independent variable compared with the dependent variable is more variable in sign.

But in the 4 quarter lag case it corresponds to intuition with higher cap rates corresponding

to a steeper credit curve.

Since the statistical signi�cance of covariates are somewhat better for 4 quarter lags for

the macroeconomy, and the Adjusted R-squared of 0.80 is highest for that lag, we make the

modeling choice to determine our SCXs for any time, t, with 1-year lagging macrovariables,

t − 4. We will also exploit these lead/lag relationships between CRE and macroeconomic

variables in the construction of SCXs in a variety of ways throughout the paper.

10This could be written equivalently, with the same results fastening t for the dependent variable and
varying lags for the macroeconomic variables n ∈ [0, 4] resulting in subscripts of t − n subscripts for the
macroeconomic variables. This is discussed further in Section 5.4.
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3.4 Step 3: Supralocation ordinary least squares (`OLS')

There are 60 distinct geographic supralocations. The OLS is thus given by

Cj, t = αj + β1,jHPIj, t−4 + β2,jUEj, t−4 + β3,jCreditSlopej=52,t−4

+β4,jMtgRatej=52,t−4 + β5,jCREchgo�j=52,t−4 + εj,t
(6)

with j ∈


1...51 = Fifty-one (51) total State regions

52 = One (1) total US National region

53...60 = Eight (8) total NCREIF regions

. Where j=52=US is but one of the 60 supralocations.

Since we compute observable NCREIF cap rates, Cj, t, for all j ∈ [1, 60] geographic supralocations

with Eq. (4) from the NCREIF data, we thus are able to compute 60 total OLS with Cj, t

as the observed dependent variable.

We note that in Eq. (6) we restrict the index for credit slope, 30 year mortgage rate and

CRE chargeo� rates to j = 52 which corresponds to the National (US) supralocation, because

those three variables are only reported at the National level, while HPI and UE are available

for all j ∈ [1, 60] supralocations. We compute Eq. (6) for all supralocations j ∈ [1, 60].

As we are determining a di�erent set of coe�cients for each Region, the α, β and ε values

must also carry the index associated with the j-th supralocation. The indexed estimated

constants and coe�cients are used in the projection of SCXs.

[Insert Table 4 about here]

Table 4 provides reports summary results for the 60 OLS regressions at the supralocation

level. We report the regression results corrected for serial correlation in the residuals with

Newey-West standard errors. All regressions were signi�cant as evidenced by the F-test.

Adjusted R-squared values range from 0.25 to 0.98. The results are generally consistent

across for most of the supralocations. The independent variables of commercial real estate

charge-o� rates (`crechargeo�') and credit slope (`creditslope') are generally highly signi�cant

and with negative sign. The independent variables of house price indices (`hpi'), the 30-year

FHLMC mortgage rate (`mortgagerate') and unemployment rate (`ue') were mixed in sign

but, generally, highly signi�cant.
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Figure 2 summarizes the statistical pro�le graphically across all 60 supralocations. Figure

2a (on the left) shows the composition of signi�cance for each of the independent variables

within all OLS regressions. For example, HPI and UE exhibit varying levels of signi�cance

in about 40% of the cases while CRE chargeo�s are signi�cant in virtually all cases. Figure

2b (on the right) shows the adjusted R-squared values for all OLS regressions.

[Insert Figure 2 about here]

3.4.1 Robustness checks - Supralocational OLS

We perform many standard robustness tests on the OLS model at National, Regional and

State levels corresponding to the OLS models described in Eq. (6) detailed the Online

Appendix (available on request). They include discussion and results for: i.) Omitted

variables; ii.) Multicollinearity amongst the explanatory variables; iii.) Serial correlation;

iv.) Endogeneity between the model regressors and the error term; and v.) the insigni�cance

of cap rate deltas as explanatory variables. In conjunction the tests do not require us to

alter the OLS in Eq. (6). The results are purely supplementary to the results presented in

the main text of this paper and may be provided to the interested reader.

3.5 Step 4: Economic proximity to relate MSAs with Supralocations

Distance matrices are a well established tool used in scienti�c research. Fields such as

genomics, chemistry, economics, and �nancial risk management apply distance matrices

to evaluate di�erences between object pairs based on some common characteristic.11 In

biology, for example, Jiang, Oron, Clark, Bankapur, D'Andrea, Lepore and Funk et al

(2016), use similarity matrices derived from nucleotide sequences and structural similarity

between genes in di�erent organisms to assign putative biological functions to genes for which

no experimental functional validation is available. The particular application of economic

distancing we develop in this paper is new to the literature focusing on CRE. Economic

parameters of observed HPI and UE create a reasonable backdrop for characterization of

economic health. Since publicly available time series of cap rate indices at the MSA level

11See Dokmanic, Parhizkar, Ranieri and Vetterli (2015).
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do not exist to our knowledge, we resolve to project them as follows. For each time t, we

de�ne the economic proximity, dist(k, j)t, between each of the 402 MSA levels and the 60

supralocational levels as

dist(k, j)t =

√
(HPIk − HPIj)

2 + (UEk − UEj)
2 (7)

with k = [1, 402] MSAs and j = [1, 60] supralocational levels of granularity above the MSA

level. FHFA's HPIs and BLS's UEs are reported at the MSA level which allows us to use

Euclidean distancing to determine the SCXs from these observable primitives. We exclude

CRE chargeo� rate, credit slope, and mortgage rate variables from Eq. (7) since they are

reported only at the National level. We normalize HPI and UE at each time t by the range

of their values in the sample to ensure neither value dominates the other in the distancing.

3.6 Step 5: Capturing economic similarity

For each of t ∈ [1, 95] consecutive quarters from Q4 1991 to Q2 2015 a matrix with dimensions

402 rows (corresponding to the k ∈ [1, 402] MSAs) and 60 columns (corresponding to the j ∈
[1, 60] geographic supralocations of Nation, Region and State) is formed with the distances

calculated in Eq. (7). These distances are elements of the matrix Dk, j, t where

Dk, j, t =


dist(1, 1)t dist(1, 2)t · · · dist(1, 60)t
dist(2, 1)t dist(2, 2)t · · · dist(2, 60)t

...
...

...
...

dist(401, 1)t dist(401, 2)t · · · dist(401, 60)t
dist(402, 1)t dist(402, 2)t · · · dist(402, 60)t

 , ∀ t ∈ [1, 95] (8)

There are 95 such matrices, one corresponding to each quarterly date, t. Figure 3, a heatmap,

depicts one such matrix, Dk, j, t=93, corresponding to one time, t = 93.

[Insert Figure 3 about here]

The elements of each matrix consist of 24120 economic proximities dist(k, j)t=93 as de�ned

in Eq. (7). These economic proximities, di�er from quarter to quarter and are used to

calculate the SCXs.

We are `searching' for the supralocation that is most economically similar to the MSA

by using the HPI and UE dimensions in each period t. Thus, for a given time period t, the
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supralocation that is most economically similar to the MSA will be the one corresponding

to the smallest value for the economic proximity, dist(k, j)t as de�ned in Eq. (7). For each

time t and on each row k, the minimum economic proximity is calculated as

d∗k,t = min
j

[Dk, j, t] (9)

In other words, d∗k,t is the distance between k-th MSA and the j-th nearest neighboring

supralocation among the 60 supralocations at time t. These minimizing values, d∗k,t, will

re�ect the closest (most similar) economic proximity values between the k-th MSA and

the minimizing j-th supralocation. Necessarily, we must also capture, for any time t, the

corresponding j-th supralocation for the k-th MSA to be a function of the minimization

search expressed in Eq. (9), such that

j∗k,t = argmin
j

[Dk, j, t] (10)

where j∗k,t is the index of the supralocation nearest to MSA k at time t. The best economic

proximity value at time t will have the smallest value d∗k,t as determined in Eq. (9) and its

corresponding supralocation, j∗k,t, as determined in Eq. (10).

3.7 Step 6: Projecting the SCXs

Since we do not observe public MSA level cap rate indices for all property types in nature,

we project them with the following selection method. The minimum economic proximity,

d∗k,t, is calculated, and the corresponding j∗k,t supralocation for the k-th MSA is recorded.

We then select the constants (αj's) and coe�cients (βj's) from the regressions estimated in

Eq. (6), where all such selections must correspond to the recorded j∗k,t minimum economic

proximity supralocation for the k-th MSA as noted in Eq. (10).

Using data for each of the independent variables observed at any time t we then interact

the data with the j-th selected OLS constants (αj's) and coe�cients (βj's) as described
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above to compute k ∈ [1, 402] MSA level SCXs, C̃k,t, de�ned as

C̃k,t = αj + β1,jHPIk, t−4 + β2,jUEk, t−4 + β3,jCreditSlopej=52, t−4

+β4,jMtgRatej=52, t−4 + β5,jCREchgo�j=52, t−4

(11)

As previously noted in the description for Eq. (6), Eq. (11) also restricts the index for the

values of the CreditSlope, MtgRate, and CREchgo� to j = 52 which corresponds to the

National (US) supralocation, while HPI and UE correspond to the k ∈ [1, 402] MSAs. We

emphasize that the left hand side values in Eq. (11) are not observed in nature. Rather,

they are projected by us by our method combining OLS at the supralocation levels in Eq.

(6) and selection of those corresponding supralocation constants and coe�cient based on the

method described above in Eqs. (7, 8, 9, and 10). Since Eq. (11) is a straight projection of

C̃k,t from estimated (and selected) constants and coe�cients by our method described, it is

not itself an OLS, no error term, ε, is included.

We project 38190 values for the left-hand side
(

C̃k,t

)
of Eq. (11) with selected values on

the right-hand side of Eq. (11) corresponding to all MSAs k ∈ [1, 402] for all times t ∈ [1, 95]

shown in Figure 4. Figure 4 shows SCXs for 4 of the 402 total MSAs as speci�ed in Eq.

(11) governed by the distance equation Eq. (7) and the selection procedure as previously

described. The procedure yields a total of 402 separate quarterly time series of SCXs from

Q4 1991 to Q2 2015.12

[Insert Figure 4 about here]

Because SCXs are constructed from macroeconomic variables, and not CRE prices, they

provide a re�ection on the impact of broader macroeconomic trends on CRE property risk,

independent of market price sentiments.

3.8 Discussion

When predictive models perform well, there is some suggestion that the variables under

consideration are important as in our model choices. Our approach is more subtle. We

believe the e�ects of HPI and UE are di�erent under di�erent regimes, and thus we apply

12The Online Appendix provides long form table summary statistics for all 402 SCXs.
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di�erent e�ects to those and all other variables relative to each other based on the most

similar observable regime. HPI and UE will be prominent in some regime models, less

so in others, and we will choose the model that is observably closest to the property in

question based on all available information in the model. All models consider HPI and UE

in addition to all the global variables. The selection of a model supralocation is as dependent

on HPI as it is on UE, since both values are normalized prior to calculation of the distance

measurement. Thus both have the same variance, and over all time periods and locations

will have the same aggregate impact on choice of the nearest model. Only the selection of

the model parameterization is determined by economic distance. The minimizing distance

measure governs the selection of the j-th supralocation level coe�cients used in Eq. (11) to

calculate the SCX at each time t. In this way the economic distancing selects coe�cients

based upon economic similarity without regard to geographic proximity, ex-ante. SCXs thus

di�er from existing index methods which, through use of repeat sales indices or appraisal

based indices, as described in Bailey, Muth and Nourse (1963), Case and Shiller (1987), and

Pagliari, Lieblich, Schaner and Webb (2001), all take information on underlying valuations

as a given. SCXs in contrast do not. Instead we create projections of implied cap rates

which may be thought of as commercial real estate health indices distilled from disparate

information that is bound together through our methodology.

Importantly, the values C̃k,t have neither ex ante geographic restrictions nor information

directly identifying industry concentration, population density, construction, or other local

factors. In our approach, economic conditions are captured solely in the parameters HPI

and UE which govern the MSA level to supralocational level economic proximity used for

coe�cient selection in each period for each MSA. As such, the j-th minimizing supralocations

determined in each time t for each of the k ∈ [1, 402] MSAs are often di�erent for di�erent

times t. This is purposeful. Table 5 shows the economic proximities for MSA k = 1 for two

periods: period 1 = Q41991 and period 80 = Q42011. In period t = 1, the minimal value

of dk,t = d∗1,1 = 0.3876 which corresponds to supralocation jk,t = j∗1,1 = 21, the US State of

Hawaii. In period t = 80, the minimal value of dk,t = d∗1,80 = 0.1911 which corresponds to

supralocation jk,t = j∗1,80 = 17, the US State of Delaware.

[Insert Table 5 about here]
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4 Model validation

This section provides the validation of the model using standard validation methods and

drawing on prior work from Shannon (1948) and Kohavi (1995).

4.1 Multicollinearity analysis

The SCX model should produce cap rate values that are intrinsically stable. Because we

use OLS, there may be some instability in the coe�cients exclusively between the National,

Regional, and Statewide variables and MSAs due to multicollinearity. However, this is

a straight result of interactions between those National, Regional, and Statewide variable

averages which are by their nature multicollinear. The initial regressions from which the

coe�cients are `farmed' for SCX projection do not exhibit multicollinearity in testing. The

estimations therefore should remain the same regardless of shifts amongst National, Regional,

and Statewide coe�cient weights.

While explanatory variables may exhibit multicollinearity it will not reduce the predictive

power of the model. We are `switching' from one set of coe�cients to another based upon the

distance d∗k,t in each period. As such, concerns related to instability of coe�cient estimation

for small changes in data should be muted. To investigate, we note that the economic

distance, d∗k,t, in our model will not necessarily produce the same C̃k,t for a given period

even if the aggregated values dist(k, j)t for two or more di�erent k locations are equal. Only

in cases where HPI and UE from two di�erent locations are identical to one another will

the model produce identical C̃k,t values for the period. However, in this study where we

calculate 38190 SCX values between 1991 and 2015, our method produces only 110 instances

of non-unique (identical) values (or 0.288% of all calculated SCXs). This bolsters our claims

as to the precision and stability of SCXs determined using our methodology, especially given

the geographic and historical breadth of the study. If we simply found MSA x supralocation

pairs that were consistently reliable proxies from period to period, one would question the

contribution of our approach.
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4.2 Shannon Entropy scoring analysis

While it is tempting to look at the variation of nearest neighboring regions over the 95

quarters in terms of the variance in their indices in the [1, 60] domain (i.e., E [(x−µ)2/σ2]) it is

important to recognize that any such variance estimate is strongly dependent on the arbitrary

choice of order of the index. Thus there is no non-arbitrary measure of the variance of a

non-ordinal categorical variable. However, there is a clear di�erence between a categorical

variable which is typically observed to take on only a small subset of its possible values, and

one that is observed to take on all of its possible values at similar rates. The corresponding

measure of variance of such a non-ordinal variable is its Shannon Entropy13 which, like the

scalar variance, takes into account the number and frequency of di�erent values it takes

on, without the scalar's requirement of a mean, which is meaningless to categoricals. We

compute Shannon's Entropy score, Hj(xk), where

Hj(xk) = −
∑
xk

p(xk)log2p(xk) (12)

which is the negative logarithm of base 2 of the probability mass function for categorical

variables. In this context, the categorical variables are the MSAs and supralocations and

p(xk) represents the percentage of quarters of the j-th MSA in the k-th supralocation

observed over 95 quarters. Shannon's Entropy scores which span from 0 (certain) to in�nity

provide an additive measure of uncertainty for categorical variables. Computing Hj(xk),

allows us to create a single value re�ecting the stability of the distancing procedure for each

MSA determined from the set of supralocations. The score allows us to then rank order

based on supralocation selection variability as depicted in Figure 6. Figure 5 summarizes

the Shannon Entropy score analysis.

[Insert Figure 5 about here]

Figure 5a shows the scatterplot of the Shannon Entropy scores for MSAs which range from

2.6763 to 5.2524. Figure 5b groups the scores in partitions with increments of 0.25, with

most scores falling between 4.75 and 5.00 and mean and median of 4.7 and 4.8, respectively.

13As introduced in Shannon (1948).
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Table 6 provides a long form table of Shannon Entropy scores for all 402 MSA locations in

support of the model validation.

[Insert Table 6 about here]

The Shannon Entropy scores we calculate support the perspective that our distancing procedure,

while utilizing many supralocations across the US, appears to be consistent across most

MSAs. The scoring results do not suggest serious uncertainty based on the additivity

principle, nor does the scoring indicate levels of certainty as might be seen in perfect

substitutes. The distancing measure appears to be sensitive to changes in the HPI and

UE drivers across the nation and reasonably stable with respect to selection uncertainty

across MSAs.

4.3 Leave one out cross-validation (`LOOCV') analysis

A standard quantitative method to validate the model methodological approach is to implement

the standard leave one out cross-validation (`LOOCV') approach described in Kohavi (1995).

Brie�y, for each supralocation j ∈ [1, 60] we assume that a supralocation k is our target MSA,

and that our pool of supralocations now consists of the remaining 59. Then, reproducing our

methodology with this change, for each of t ∈ [1, 95] consecutive quarters from Q4 1991 to

Q2 2015 a matrix of dimensions 60 rows (corresponding to each of the arti�cially `missing'

k ∈ [1, 60] supralocations of Nation, Region and State) and 59 columns (corresponding to

the j ∈ [1, 59] geographic locations of existing Nation, Region and State) is formed with

the distances, dist(k, j)t representing the elements of the matrix Dk, j, t. There are 95 such

k x j matrices, one corresponding to each quarterly date, t. For each row, k, the minimum

distance, d∗k,t = min
j

[Dk, j, t] , is calculated giving 60 such distances, one for each supralocation

substitute for MSA. We compare the 60 time series comparing for each time t, the actual cap

rates at the supralocations, Cj, t, to the 60 LOOCV projected cap rates, Ĉj, t by calculating

their mean square errors (`MSEs') as

MSE =
1

T

T=95∑
t=1

(
Cj, t − Ĉj, t

)2
(13)
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The results are summarized in Table 7 and are quite good. The overall MSE for all

observations was 5.30% which compares well with the accuracy found in credit ratings

literature as described in Kramer and Guttler (2008) and others. Of the 60 supralocations,

50 exhibited MSEs < 9% with the remaining 10 exhibiting MSEs> 11%. The MSE for the

US (4.65%) was close to the overall MSE of 5.30%. Good results in NCREIF Northeast

Region, NY and Rhode Island with MSEs of less than 0.70% were o�set by extreme MSEs

in NJ of more than 30%. Poor MSEs in TX and NCREIF Mideast Region were o�set by

excellent performance in other NCREIF Regional composites, NY, and CA. In conjunction,

these results suggest that the SCX values are stable and fully utilizing the geographic breadth

of the Nation through economic proximity.

[Insert Table 7 about here]

4.4 Supralocational pairing analysis

To get a visual sense for di�erent levels of the stability corresponding to di�erent MSAs across

time we note that the variables of interest are the MSAs and the supralocations across time.

The matrix Jk,t with 402 rows (corresponding to the k ∈ [1, 402] MSAs) and 95 columns

(corresponding to the t ∈ [1, 95] successive quarters) has as its elements the collection of

38190 supralocations, j∗k,t, determined from Eq. (10) such that

Jk, t =



j∗1,1 j∗1,2 · · · j∗1,95

j∗2,1 j∗2,2 · · · j∗2,95
...

...
...

...

j∗401,1 j∗401,2 · · · j∗401,95

j∗402,1 j∗402,2 · · · j∗402,95


(14)

Figure 6, a heatmap, corresponding to Eq. (14) reveals the distribution of all 38190

supralocation selections (with values 1 thru 60, as indicated in the legend) for all 402 MSAs

across all 95 quarters in the sample period.

[Insert Figure 6 about here]
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We see the selection procedure of mapping coe�cients from the supralocation level to

the MSA level varies geographically over time. There are instances of lighter and darker

clusterings corresponding to supralocation selection for given dates. There does not appear

to be a regular pattern. This suggests that the procedure is `using' the entire Nation divided

amongst the supralocations to �nd the best economic proximity for a given period and MSA.

4.5 Discussion

In this section, we used standard validation tests of multicollinearity, Shannon Entropy

scoring and LOOCV as well as an innovative visual representation of supralocational pairing

across time to validate our model. All techniques are appropriate for validation of this class

of models and support our claim of a novel and valid approach to our SCX method.

This section corresponds to our �rst main result: we validate the soundness of our method

by con�rming the stability, and levels, of SCXs produced by our method.

5 Model implications: Valuation and default analysis

In this section we investigate SCX contribution to CRE risk assessment with comparisons

between SCXs and actual cap rates. We conduct distributional, probabilistic, valuation and

default estimation analyses. In all analyses, we consider 25101 CRE properties underlying

125 CMBS transactions in our sample.

5.1 Distributions and probabilistic analysis

Each of the properties in the private loan data described in Section 2 are independent of

properties included in the NCREIF portfolio and have an origination date, and corresponding

property value, NOI, and cap rate information at origination. The cap rates associated with

such properties are also independent of NCREIF cap rates. This allows us to conduct an

out of sample comparative analysis between SCXs and values κι,t representing the actual

cap rate for the ι-th property with ι ∈ [1, 25101]. For each property we �nd the SCX, C̃k,t,

that corresponds to the MSA identi�er of the property at the loan origination date. We
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split the sample between all properties and only those properties that defaulted on their

loan obligation secured by the property. In Figure 7a and 7b we plot cumulative cap rate

distributions for the non-defaulted and defaulted subsets. While actual cap rates and SCXs

exhibit di�erentiating capabilities between safer and more risky assets, the assessment of such

risks made with SCXs appears to be more conservative than were made by actual cap rates.

SCXs are higher than actual cap rates and di�erences between defaulted and non-defaulted

cumulative distributions are wider for SCXs than for actual cap rates.

[Insert Figure 7 about here]

We conducted t-tests summarized in Table 8 for paired samples for non-defaulted and

defaulted subsets. These results allow us to reject the null hypothesis that the means of the

di�erences between the sample are zero at the 1% level of signi�cance.

[Insert Table 8 about here]

We quantify the relative propensity to lend at or below cap rate upper bounds in

probabilistic terms. The probability of lending at, or below, a given cap rate C is given

by

F (C)− F (0) = Pr(0 < X ≤ C) =

∫ C

0

f(x) dx (15)

Table 9 provides the cumulative normal probability distributions corresponding to the mean

and variances previously provided in Table 8.

[Insert Table 9 about here]

Looking at the top row for all loans, the probability of lending on a property at or below

a 7% cap rate is 49.87% using the lending practices associated with the actual cap rate

history. In contrast, using SCXs for all loans, the probability of lending at or below 7% (on

the same properties) is 31.67%. The economic interpretation is that lending according to

actual practices is about 57% more likely to result in a loan at a cap rate at or below 7%,

evidencing a more conservative CRE valuation with SCXs, C̃k,t, than with actual cap rates.
14

14With NOI, Oι,t, held constant at origination date t, for κι,t < C̃k,t, Vι,t,κ =
Oι,t
κι,t

> Vι,t,C̃ =
Oι,t
C̃k,t

.
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This relationship increases non-linearly. The e�ect is most pronounced in the default sub-

sample. Loans that ultimately defaulted with values at origination corresponding to actual

cap rates were about 3x as likely to occur (0.4588/0.1439) at or below the 7% upper bound

than for evaluations informed by SCXs.

5.2 Valuation analysis

Table 10 provides summary statistics conducting property valuation with SCXs and comparing

to actual values reported.

[Insert Table 10 about here]

The actual underwritten valuation of all properties (25083) in the sample was $706.1 billion

of which $685.9 billion (24071) did not not default, while $20.2 billion (1012) did default

on loan obligations over the sample period. For this sample, we then computed the implied

valuation of the property (V ) using the NOI (O) at origination and the corresponding SCX

(C) corresponding to the quarter in which the loan was originated and within the MSA in

which the loan's collateralizing property zip code is found. We then use that SCX (C) in

the CRE valuation identity, Eq. (1). We �nd aggregate property valuations determined by

SCXs to be lower than actual property values determined with actual cap rates by about

11% overall. Further, importantly SCXs produced property valuations lower by about 13%

for those loans that defaulted suggesting a more conservative approach to CRE valuation

with SCXs than with actual market cap rates.

[Insert Figure 8 about here]

Figure 8, for example, shows the geographic distribution of 1013 defaulted loans in

our sample at the US (Figure 8a); approximate geographic center of the continental US

(Figure 8b); and neighborhood in Wichita, KS (Figure 8c).This granular parsing allows us

to observe for example, a defaulted $5.4mm loan on a $6.9mm property carried with it a

SCX in the corresponding MSA at origination of 0.087, while the corresponding actual cap

rate at origination of 0.070 was 187 bps tighter. Thus, for this one loan, the underwritten

CRE valuation was substantially higher than would have been the case with a CRE property
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valuation conducted with the MSA level SCX. However, conservative does not mean categorically

lower CRE valuations with SCXs. There are many instances the CRE valuations were

considerably higher than indicated at the point of origination as indicated in the nominal

maximum ratios in Table 10.

This valuation analysis could be re�ned further with simulated sensitivity analysis of

upper and lower bounds over a con�dence interval for SCXs, but that is left to future research,

Overall, the valuation statistics are consistent with the distribution and probabilistic analysis

above. These analyses do support questioning as to whether lending practices and corresponding

CRE valuations associated with actual cap rates were overly optimistic (or pessimistic)

relative to underlying credit risks. In short, do SCXs provide a more accurate estimate

of CRE risk and value than actual cap rates? We investigate this further with logistic

regressions next.

5.3 Default estimation analysis

Because we have actual cap rates at origination, and corresponding matched SCXs, we may

investigate into the comparative strengths of actual cap rates compared with corresponding

SCXs in the estimation of lifetime default likelihoods. As such, we implicitly test market

expectations of future real estate values with a fair value measure, which necessarily must

be independent of market prices.

To quantify whether lending practices which used actual cap rates (vs SCXs) accurately

re�ected the impounding of macroeconomic in�uences contained in SCXs we use the standard

method of multivariate logistic regression of the form

Pr(Def) = F (x) =
1

1 + e−β0+
∑n
i=1 βixi

(16)

where F (x) represents the probability of default. The dependent variable is the default

indicator variable equal to 1 if the loan defaulted at any point over the sample period

and 0, otherwise. The parameter estimates, βi, are determined numerically with maximum

likelihood estimation.

Our actual (market) cap rates in this analysis are not NCREIF cap rate estimates. Rather
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we use the actual cap rates from Intex data determined using Eq. (1) at the point of loan

origination. Speci�cally, in the logistic regression testing of SCXs we use the `going-in'

market cap rates, Ct,i∈[1, 25101] for the 25101 loans from Intex and compare them to the SCX,

C̃k,t, de�ned in Eq. (11) for the loan in the quarter in which the loan was originated and

within the MSA in which the loan's collateralizing property zip code is found..

5.3.1 First Treatment

In the �rst treatment we consider only one explanatory variable, x1= cap rate (actual or

synthetic), to evaluate di�erences between defaults that took place in CBDs compared with

those in non-CBDs. The results are summarized in Table 11.

[Insert Table 11 about here]

The signi�cance of the estimates is indicated by the z-values produced by the Wald test.

The signi�cance of the regression overall is determined with Chi-squared test and we use

McFadden's adjusted pseudo R-squared which measures 1 minus the ratio of the estimated log

likelihood for the model with parameters (adjusted for the number of parameters) with that

of the null model. The results show higher cap rates are associated with higher probability

of default at the 1% signi�cance level with better Chi-Squared and Adjusted Pseudo-R-

squared statistics. Interestingly, the results show that SCXs have greater sensitivity to

lifetime default risk than actual cap rates for the entire sample and in each of the CBD

and non-CBD sub-samples. These disparities in sensitivity are most pronounced for loans

categorized as non-CBD loans where SCXs are highly signi�cant and actual cap rates are

insigni�cantly di�erent from zero. This result supports claims of misspeci�cation of CRE

risk when lending outside of CBDs.

5.3.2 Second Treatment

In the second treatment we consider �ve independent variables x1= cap rate (actual or

synthetic); x2= occupancy rate; x3= property age; x4= CBD dummy with 1 indicating

property location within a CBD and 0 indicating property location outside of a CBD; and
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x5= property type �xed e�ects which exclude the 1009 mixed-use/other properties (OT).

The results in Table 12 are in-line with Table 11.

[Insert Table 12 about here]

Occupancy rate and property age are highly signi�cant as expected. Higher likelihoods

of default are associated with lower occupancy rates at origination and older properties

(possibly due to more stable tenancy and usage). Presence within CBDs is highly signi�cant

and positive suggesting higher likelihoods of default in CBDs. Property �xed e�ects are

insigni�cant. Consistent with the �rst treatment, SCXs are highly signi�cant predictors of

default across all groupings. In particular, non-CBD results again indicate that actual cap

rates provide no statistically signi�cant insights into the lifetime risk of CRE default. This

contrasts with the signi�cant assessment of CRE risk articulated by SCXs.

5.3.3 Third Treatment

The purpose of SCXs is to isolate the time-agnostic aspect of the model. As such, in the

third treatment, we control for distinct lending regime time �xed e�ects with an additional

independent variable x6. We divide the sample into origination sub-periods corresponding

to: i.) pre-911 (34 loans originated prior to September 2001); ii.) pre-crisis (11192 loans

originated between October 2001 and December 2006); iii.) crisis (8736 loans originated

between January 2007 and December 2009); and iv.) recovery (5139 loans originated between

January 2010 and December 2014). The mean loan-to-value ratios (`LTVs') of 58%, 68%,

74%, and 63% corresponding to these regimes map to intuition. Following the September

11th terrorist attack, lending restrictions in the US eased (higher LTVs than pre-911).

Lending became freer still in the crisis (with higher leverage) in carry over funding obligations

until origination ceased in mid-2009. In the recovery period, when lending resumed in 2011,

a new lending paradigm characterized by lower leverage took hold with lower LTVs than

observed in both pre-crisis and crisis periods. Because of distinct phase shifts in lending

regimes, we project our time �xed e�ect with dummies from pre-911, pre-crisis, and recovery

periods, `bookending' the crisis period. Additionally, we consider the publicly observable

VIX volatility index as another covariate, x7, to capture exogenous market volatility. We
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map end of day closing values for VIX values to corresponding origination dates for each

loan in our sample. The results found Table 13 echo key observations from the two prior

treatments. Property �xed e�ects are insigni�cant while occupancy, property age, and CBD

location remain highly signi�cant. The lending regime time �xed-e�ects and VIX exhibit

signi�cance with little distinction between sub-samples. The main results persist from the

earlier treatments persist: SCXs exhibit more signi�cant assessment of lifetime property

default risk than actual cap rates outside of CBDs, with equivalent assessments within CBDs.

[Insert Table 13 about here]

5.4 SCXs as natural 1-year forecasts

It is important to note that the method we introduce provides a wealth of insights across

current and forward states of the economy with meaning for CRE. Introducing some simplifying

notation to keep reporting tractable, let Gk,t−q represent the right hand side composite of

selected constants, coe�cients and macroeconomic data in Eq. (11), for the k-th MSA

location and lagged dates SCX, observed at time t− q quarterly lags with q ∈ [0, 4]. So we

may write C̃k,t = Gk,t−4 as a shorthand equivalent to Eq. (11). C̃k,t is correctly interpreted

as the current SCX based on 4 quarter lagged macro variables supported by the discussion

Section 3.3.

However, at any time t there are �ve SCXs that are projected by our method15 for any

MSA varying by the time index of the right hand macroeconomic data and correct selection

of coe�cients and constants. Speci�cally, by shifting the time index and matching the

data and estimates in periods correctly, we produce: (i.)C̃k,t = Gk,t−4, (ii.)C̃k,t+1 = Gk,t−3,

(iii.) C̃k,t+2 = Gk,t−2, (iv.) C̃k,t+3 = Gk,t−1, and (v.)C̃k,t+4 = Gk,t. Therefore, just as

(i.)C̃k,t = Gk,t−4 is correctly interpreted as the current SCX based on 4 quarter lagged

macroeconomic variables, it is also true that (v.)C̃k,t+4 = Gk,t is correctly interpreted as a

natural 1-year forecast SCX based on current (time t) macroeconomic variables, which, in

expanded form is written as:

15As described in Eqs. (6, 7, 8, 9, and 10).
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C̃k,t+4 = αj + β1,jHPIk, t + β2,jUEk, t + β3,jCreditSlopej=52, t

+β4,jMtgRatej=52, t + β5,jCREchgo�j=52, t

(17)

Figure 9 shows the predicted National cap rate (SCX at the National level) compared

with the actual NCREIF cap rate index at the National level. As is evident, the time series

for the SCX projects forward an additional 1-year. Speci�cally, the 1-year natural forecast

SCXs, C̃k,t+4, distilled from macroeconomic variables projected onto CRE valuation provide

current and forward looking insights into CRE health at the MSA level.

[Insert Figure 9 about here]

5.5 Discussion

A robustness check of Treatments 1, 2 and 3 was conducted comparing natural `1-year

forecast SCXs', C̃k,t+4 in Eq. (17) to going-in actual loan level market cap rates Ct,i∈[1, 25101]

where time t origination time corresponds to time t calculation time of SCXs. Those results

are reported in the Online Appendix and are consistent with main �ndings, if a bit better,

than the three treatments above. We leverage this and the natural forecast capability of

SCXs in the next section.

This section reports our second main result: SCXs provide better insights into lifetime

CRE default risks than actual cap rates and di�erent real estate valuations than market

driven cap rates.

6 Linear estimates of SCXs during Covid

In this section we provide a treatment of linear estimates of SCXs during the Covid pandemic.

SCXs are particularly well suited to make statements about forward CRE valuation in the

midst of the Covid pandemic as macroeconomic trends from policy begin to emerge and as

policy changes are implemented. The natural 1-year forecast SCXs are used in this Section

and we will leverage, statistically, the inherent forward looking nature of SCXs to add to the

information content for the CRE industry.
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6.1 Background: Covid, CRE, and SCXs

During the Covid pandemic CRE experienced a very serious economic shock. At a high

level, in an e�ort to contain sickness and fatalities associated with the Covid-19 virus,

government mandated restrictions on the use of space emerged. Social distancing policies,

travel restrictions, work from home options combined to have a dampening e�ect on CRE

activity with deterioration in common patterns of human gathering and use of CRE space.

As a result many property types such as hotels and retail were unable to generate revenues

to support debt service. Additionally, migration out of urban centers, as noted by Whitaker

(2021), that were especially hard hit by Covid, compressed apartment building rents. Finally,

rethinking of longer term and more permanent use of at least partial work from home options

began to emerge as commonplace and weighed on terms for existing o�ce leases and terms

for lease renewals. These changes in the frequency and intensity of human engagement

with CRE property had negative impacts on NOI for many properties and gave rise to a

broader perception of a deterioration in CRE values. These perception of stresses to CRE

values manifested clearly in capital markets. Broad based declines in 2020 in REIT and

CMBS prices occurred in the opening stages of the Covid pandemic when vaccinations and

inoculation was still not yet a certainty. These perception of stresses in capital markets were

then followed by increases in delinquency and default rates on CRE debt as described in

Buhayar, Gittlesohn and Gu (2020).

While the Covid pandemic has been a global tragedy, a healthy banking system and

judicious use of credit post Great Financial Crisis (`GFC') allowed lenders to engage with a

coordinated response to Covid and gyrations over perceived value declines observed in capital

markets. Tools such as forbearance, loan extensions, and Federal support from emergency

loan and grant subsidization in the form of paycheck protection program (`PPP') loans to a

variety of businesses that lease space from CRE property owners16 have combined to bring

delinquency, default and charge o� rates to substantially lower levels during the �rst 18

months of Covid17, though this may change in the future due increases in borrowing rates

16See Jones (2021).
17As described in DeSanctis (2021), Duski and Che (2021) and Federal Reserve Board of Governors (2021),

among others.
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emerging from tighter monetary policy as noted in Wheeler (2022). While e�orts to stave

o� the emergence of bad loan chargeo�s and corresponding liquidity pressures (as seen in

the GFC) have been reasonably successful to date, these e�orts say nothing directly about

the benchmark valuation of CRE directly re�ective of the policies themselves.

By providing an assessment of CRE with benchmark SCXs at MSA levels, we capture

the relationship between the macroeconomic variables and the implication of value one year

forward for CRE. This is a well suited exercise during the Covid era when CRE exhibited

considerable dislocation.

6.2 Isolating estimates for SCXs at the MSA level

Since we projected validated SCXs at the MSA level in Section 3, we consider the statistical

signi�cance and direction of the independent variables for k ∈ [1, 402] MSAs on the right-

hand side of those now newly created SCXs, C̃k,t on the left hand side of Eq. (11). To do this,

we carefully revisit (and re-note) the initial model parameters and re-estimate the constants

and coe�cients for the model computing 402 new OLS for k ∈ [1, 402] MSAs, of the form

C̃k,t = αk + β1,kHPIk, t−4 + β2,kUEk, t−4 + β3,kCreditSlopej=52, t−4

+β4,kMtgRatej=52, t−4 + β5,kCREchgo�j=52, t−4 + εk,t
(18)

Figure 10 summarizes the statistical results.18

[Insert Figure 10 about here]

As before, all regressions were signi�cant as evidenced by the F-test. The �gure on the

left shows the composition of signi�cance for each of the independent variables across all

regressions while the �gure on the right shows their adjusted R-squareds. HPI and UE at the

MSA level exhibit some level of signi�cance in 40% to 50% of the cases with the mortgage

rate statistically signi�cant for all MSAs. The adjusted R-squared values are somewhat

improved compared with the original supralocation results produced from Eq. (6).

The results are quite good over a long period of time. They indicate over the long term

the relationship among the macroeconomic drivers governing the cap rate indices at the

18The long form table with estimates for all 402 MSAs is available in the Online Appendix.
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MSA level. Importantly, these estimates at the MSA level may now be used to generate

linear estimates of SCXs directly from the macroeconomic variables without going through

the entire procedure of Section 3. Since the NCREIF data was not made available to the

authors after 2015 reporting dates, this is quite convenient and allows us to perform an out

of sample analysis at the MSA level during the Covid era.

6.3 Computing linear estimates of SCXs

We leverage the 1-year forecast capability described in Section 5.4 and Eq. (17) and the new

MSA level estimates described in Section 6.2 generated from Eq. (18) and summarized in

Figure 10 to produce linear estimates of SCXs 1-year forward, Čk,t+4, de�ned as

Čk,t+4 = αk + β1,kHPIk, t + β2,kUEk, t + β3,kCreditSlopej=52, t

+β4,kMtgRatej=52, t + β5,kCREchgo�j=52, t

(19)

directly from the MSA level linear estimates αk, β1,k, β2,k, β3,k, β4,k, and β5,k determined in

Eq. (18) and the current (time t) macroeconomic variables HPIk, t, UEk, t, CreditSlopej=52, t,

MtgRatej=52, t, and CREchgo�j=52, t.
19 In other words, we compute the left hand side

(projected 1-year linear estimated SCX) from the right hand side (historical estimates and

data). This allows us to consider, out of sample, the formation of SCXs during the Covid

era.

6.4 National average SCX from linear estimates of MSA SCXs

Consider the period 2014 through 2021, quarterly, with the latest update the June 2021

reporting period. For each reporting period t, the variable estimate interaction produces

1-year forecast SCXs as discussed in Section 3 and reiterated in Section 6.2. So, for example,

data provided as of June 2021 correspond to 1-year SCX forecasts for June 2022.

[Insert Figure 11 about here]

Figure 11.a shows the simple unweighted National average SCX, ČUS,t+4, de�ned as

19As previously discussed in Section 3, HPI and UE are speci�ed at the k−thMSA level while CreditSlope,
MtgRate and CREchgo� are speci�ed at the j = 52 (National) supralocational level.
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ČUS,t+4 =

∑402
k=1 Čk,t+4

402
(20)

quarterly, formed from the linear estimates of MSA level SCXs in Eq. (19). The �gure

captures the average 1-year forward projections for each quarter for December 2015 through

June 2022. The lines plot the time series of the National average SCX and the minimum and

maximum MSA level SCX found in each period. These values correspond to the intervals on

the left y-axis. The bars show the standard deviation across all MSAs for the period which

are reported on the right y-axis. The vertical line in March 2021, separates the pre-Covid

period from the current-intra-Covid period. Not surprisingly the SCX forecasts peaked in

June 2021 at 6.78% nationally, re�ecting peaks in Covid infection rates and high societal

uncertainty reported in the June 2020 period, 1 year prior. At that time the maximum SCXs

forecast was 12.34% with the minimum SCX value forecast to about 2.99%. Interestingly,

for the US overall, while there was an uptick in SCXs for June 2021, forecasts out to June

2022 show persistent declines tending towards 5.5%. This would suggest that at the National

level, broader macroeconomic trends emerging in the Covid era hold future promise for CRE

property values.20

6.5 Di�erences across linear estimated MSA level SCXs by workforce

While the future projections generated in June 2021 forward to June 2022 hold promise, at

the same time, the use of CRE is not evenly distributed. Indeed from BLS we note that 50.9%

of the able workforce reside in just 25 MSAs. Additionally, we note, that while intensity of

use may be larger for MSAs with dense workforce populations, they still only account for

the minority of CRE loans originated in the US as previously discussed. Finally, there have

been developments both in the popular press and in academic inquiry into the phenomenon

of large scale movement or so-called urban �ight or exodus in response to Covid. If this

sentiment is true, then SCXs for the largest MSAs which contain the large urban centers in

the US, should underperform SCXs in the smaller MSAs with fewer able workforce citizens.

20A separate vector autoregression and impulse-response function analysis of SCXs found in Christopoulos,
Barratt and Ilut (2022b) at the National level.
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We consider this by looking at di�erences in linear estimated SCXs determined by Eq.

(19) at the MSA level by the workforce population as captured by BLS. We divide the

MSAs into two sets representing approximately 50% each of the working population living

the MSA. From BLS data, 50.9% of the able workforce population in the US reside in 25

MSAs. Figure 11.b captures the weighted average SCXs at the National level and for the

top 50% and bottom 50% MSA cohorts by workforce population. What we �nd is evidence

that the top 50% cohort, pre-Covid, exhibited persistently lower cap rates (as measured by

SCXs), than the bottom 50% cohort. However, when the Covid shock hit that relationship

reversed in sympathy with higher levels of UE and more dramatic compression in HPIs in

the top 50% cohort compared with the bottom 50% cohort. Consistent with Figure 11.a,

the forecast trends of SCXs for both the top 50% and bottom 50% cohorts are expected to

decline out to June 2022.

Finally, Table 14 summarizes the quarterly data for each of those MSAs in the top 50%

cohort from December 2019 to June 2022. In the last two columns we also calculate the

simple change (in bps) between December 2019 and June 2021 and then the change from

June 2021 to June 2022. The table is presented sorting the �nal column from smallest to

largest values. What we observe is that, as expected, many MSAs exhibited substantial

SCX increases from December 2019 to June 2021 as shown by positive values in the second

to last column. This would be consistent with the implied decline in CRE property values

nationwide during Covid indicated. For example, SCXs for the MSA which contains New

York City increased from 6.63% in December 2018 to 7.67% in June 2021, for a widening

of 103.97 bps as shown in the second to last column. At the same time, New York City

also appears to be poised for a signi�cant improvement of a decline of 156.40 bps by June

2022, corresponding to a SCX benchmark level of 6.11%. The SCXs in MSAs that increased

the most from December 2019 to June 2021 such as Detroit, Los Angeles and Orlando also

are forecast to have the greatest tightening by June 2022. Interestingly, for those MSAs

where SCXs narrowed during the pandemic such as Austin, TX and San Francisco, CA the

remaining improvement (suggested by forecast tightening through June 2022) appears quite

muted.

[Insert Table 14 about here]
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6.5.1 Corroborating anecdotal support

Anecdotal support for these trends (forecast in June 2021 for June 2022) do appear to be

surfacing in the current popular press as of the date of this writing. Consistent with an

eclipse in the Austin, TX tightening of cap rates forecast by us at the MSA level for all

properties in June 2021 (in Table 14) consider The Real Deal (2022) published one year

later calling for a `bursting' of the housing bubble in Austin which precede compression in

CRE values (increase in SCX values) by our method. In contrast, consider calls for further

tightening in cap rates in New York o�ce in Wong (2022) and as forecast by us at the MSA

level for all properties in June 2021 for June 2022 (in Table 14). More data and analysis

is needed to con�rm the current forecast SCXs across all property types at the MSA level.

That is left to future research. At the same time, the default and valuation results of Section

5 (for more than 25000 properties) utilizing actual SCXs and the statistical signi�cance of

the estimates depicted in Figure 10 used for linear estimates of SCXs with Eq. (19), do

provide support for these observations.

6.6 Discussion

This treatment using linear estimates of SCXs out of sample �nds that CRE property values

in MSAs characterized by greater workforce contribution to the nation were more negatively

impacted during the Covid pandemic than those MSAs with sparser workforce contribution.

Consistent with �ndings pertaining to residential and multifamily value projections found

in Gupta, Mittal, Peeters and Van Nieuwerburgh (2021) and in broader CRE projections

as found in Barkham, Levy and Luo (2020), the projections for the 1-year forward SCXs

indicated a recovery underway through June 2022 in CRE values and the broader economy

overall with a return to cities e�ect. Many of the denser workforce MSAs while projected

to recover, are still not projected to retrace to (or improve upon) pre-Covid economic

valuations out to June 2022. This contrasts with those MSAs with less dense workforce

contributions. Necessarily, as policy changes manifest and are reported, so too will our

forecasts change linking current information to 1 year ahead projections. To our knowledge,

only our research has produced CRE forecasts at the MSA level independent of market
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prices utilizing economic proximity and our distancing methodology. Moreover, our ability

to project these forecasts with a stable and accurate methodology represents a disclosure of

the meaning of macroeconomic variables to benchmark CRE valuation at the MSA level.

In conjunction, this section corresponds to our third main result: SCXs provide a reliable

1-year forecast benchmark of CRE values directly re�ective of current macroeconomic data

and independent of market prices.

7 Summary

The CRE market in the US faces an inherent information content de�cit. This de�cit is

marked by infrequent transactions which can be ascribed in part to idiosyncratic property

characteristics and large asset size. We claim one root aspect of this de�cit is found in the

disconnect between the accurate use macroeconomic indicators to assess CRE risk. Our

quantitative methodology discloses important links between the macroeconomy and CRE

valuation in SCXs projected from public information. This is new to the literature. SCXs

appear to provide insights into CRE property valuation and lifetime default estimations that

improve upon those made with actual cap rates in the present, and the future. Given the

comparative accuracy that SCXs provide, legitimate questions are raised as to the validity

of a geographic centric lending paradigm in CRE and the sensitivity of that market to

macroeconomic in�uences. We provide some answers in this study.

Speci�cally, benchmark cap rate indices at the MSA level do not exist in nature. In

contrast, by our method, all-property type benchmark SCXs are projected from macroeconomic

indicators independent of asset characteristics, market valuations, and (ex-ante) property

locations. We do not claim that speci�c property valuations within an MSA are equivalent

nor that actual cap rates for all properties in an MSA are equivalent. However, we do claim

that SCXs projected for MSAs provide better insights into CRE risk than actual cap rates

for more than 25101 properties totaling $700 billion in valuation over 15 years of origination

from 2000-2015.

Additionally, as shown in the valuation section, SCX estimates may provide considerably

di�erent valuations of CRE properties than actual market consensus cap rates (higher and
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lower). This is as expected given the improved accuracy in lifetime default estimation

provided by SCXs, particularly outside of CBDs. These facts may be of interest to regulatory

policymakers in stress test evaluation and bank capital adequacy requirements as well as,

more tactically, in the context of risk management, origination and investment. The results

suggest a possible misspeci�ed reliance upon location of a property by the CRE market

which may have been too coarse a benchmark measure which did not accurately discern the

macroeconomic public information content in�uence on property values. This, in turn, may

have erroneously in�uenced actual valuation estimates and lending practices at the time of

loan origination.

Ongoing relationships between CRE and the macroeconomy can be monitored with

SCXs to provide insights independent of market consensus of price (and risk) which are

traditionally embedded in market cap rates. The bene�t of such monitoring can be seen

in our preliminary test case during the Covid pandemic when a fundamental tenet of the

use of space in private and public interaction was challenged with mandated (and now often

preferred) social distancing. The results of our treatment during Covid further support our

methodology. Were the data from NCREIF made available to the authors, we could do

many comparisons between linear estimates of SCXs (Section 6) and actual SCXs (Section

3). Without such data, those comparisons are not possible and this is left to future research.

Finally, our treatment of SCXs during Covid sets the stage for further research on use

cases of SCXs with consideration of population density, county level in�uences of infection

rates, and political party on projected CRE values; and this is underway. Expansions of this

new methodology can be made to property-type levels and more granular county level SCX

projection. These extensions might provide further insights. This study leaves opens the

question as to the origins of the apparent misplaced reliance upon geographic proximity and

coarser notions of location, rather than economic proximity, which is left to future work.

Our �ndings of better lifetime default estimation, model stability, and market price

independent insights into CRE valuation, suggest that SCXs represent a new set of hard

information content, suitable for more objective risk monitoring of CRE values at MSA, State

and National levels than can be obtained through market pricing by our study. SCXs may

assist in better benchmark valuation estimates of illiquid CRE assets facing informational
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constraints. By distilling the signals of the macroeconomy into CRE valuation benchmarks

independent of geographic location, asset speci�c characteristics and market pricing, SCXs

provide an innovative source of hard information content for the CRE market.
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Tables

Table 1: Summary statistics of CRE loans

Totals Averages Totals by proptype

Location # loans ($mm) occ (%) age (yrs) loan ($mm) MF LO IN OF RT OT
non-CBDs 19906 $256,758 89.2 9.2 $13 2463 1993 2952 3393 8419 686
Atlanta 173 $4,283 84.4 8.7 $25 17 30 17 57 45 7
Baltimore 81 $1,457 90 10.7 $18 10 7 13 24 18 9
Boston 54 $4,257 87.5 9.8 $79 0 5 6 35 5 3

Charlotte 157 $2,127 89.3 7.6 $14 16 22 25 42 45 7
Chicago 255 $8,688 88.8 11 $34 27 28 23 73 84 20
Cincinnati 80 $1,002 91.6 11.8 $13 16 2 6 25 29 2
Cleveland 80 $1,460 88.6 9.3 $18 11 7 5 20 36 1
Dallas 251 $4,343 89 11.2 $17 55 12 24 78 80 2
Dayton 42 $483 87.9 9.8 $12 6 3 8 7 18 0
Denver 136 $2,684 89.7 9.8 $20 5 7 18 49 50 7
Detroit 26 $376 84.9 14.4 $14 7 3 3 9 4 0

Fort Worth 89 $929 90.3 12 $10 16 8 18 13 34 0
Houston 489 $7,293 89.5 10.7 $15 111 38 54 135 145 6

Indianapolis 120 $1,796 86.2 9.6 $15 13 15 16 31 39 6
Jacksonville 109 $2,195 91.5 12.4 $20 17 6 27 19 23 17
Kansas City 67 $1,197 86.6 8.7 $18 7 9 7 18 25 1
Los Angeles 446 $8,732 91.9 12.9 $20 54 19 64 136 143 30

Miami 126 $2,622 87.6 10.8 $21 9 12 22 32 43 8
Milwaukee 58 $778 90.7 9.9 $13 5 9 6 23 14 1
Minneapolis 93 $2,325 88.5 10.6 $25 5 10 16 30 27 5
New Orleans 30 $707 81.9 7.2 $24 1 12 4 9 4 0
New York 776 $35,252 93.1 17.4 $45 251 54 38 243 101 89
Norfolk 35 $516 92.5 10.2 $15 2 5 2 15 10 1
Oakland 31 $227 83.7 7.9 $7 1 1 13 5 7 4

Oklahoma City 79 $1,078 87.6 7.8 $14 11 5 22 19 20 2
Philadelphia 121 $2,649 90.4 11.1 $22 18 8 9 33 42 11
Phoenix 191 $2,712 88.4 10.7 $14 18 10 40 41 78 4

Pittsburgh 70 $903 91.5 7.6 $13 10 8 7 18 19 8
Richmond 63 $949 86.5 7.2 $15 9 8 7 14 17 8
Saint Paul 64 $762 92.6 8.9 $12 1 4 9 25 23 2
San Diego 223 $4,672 89 11.5 $21 6 41 28 74 60 14

San Francisco 110 $3,106 93.7 12.8 $28 19 10 13 37 19 12
San Jose 47 $1,006 92 15.3 $21 4 5 9 14 12 3
Seattle 96 $3,647 89.3 10.5 $38 7 22 13 25 12 17
St. Louis 10 $242 87.6 19.5 $24 0 2 4 3 0 1
Tampa 105 $1,308 87.2 10.6 $12 15 14 9 31 34 2

Washington, DC 212 $11,892 90.6 9.7 $56 13 32 12 118 24 13
Totals (Avg *) 25101 $387,416 89.3* 9.7* $15* 3256 2486 3569 4973 9808 1009

This table provides summary statistics for the 25,101 commercial mortgages in our sample grouped by CBD and non-CBD location classi�cation.
The header provides the total number of loans and aggregate loan amount at origination. Next, we provide averages for occupancy rate, property
age, and loan size (all at the time of origination). The �nal columns provide counts for the number of loans in the sample corresponding to property
types of multifamily/apartments (MF), lodging/hotel (LO), industrial (IN), o�ce (OF), retail (RT), and mixed-use/other (OT). The rows at the
bottom of the table provide sums for the totals and property types and arithmetic means for occupancy rate, property age, and loan size. Total
loan balances by property type are provided in the �nal row. Source: Intex.

Table 2: Summary characteristics of Defaulted CRE Loans

Proptype MF OF RT LO IN OT All

# of defaults 65 271 429 111 92 45 1013
ln(avg prop size) 16.1260 16.4524 16.0708 16.3669 16.1300 16.0358 16.2127
ln(avg uwnoi) 13.4080 13.7548 13.3799 13.8237 13.4480 13.3527 13.5356

avg (actual cap rate) 0.0729 0.0726 0.0716 0.0845 0.0733 0.0727 0.0736
avg (SCX) 0.0750 0.0757 0.0772 0.0757 0.0772 0.0777 0.0765

avg LTV (%) 78.46 76.35 75.91 72.96 77.95 76.57 76.09
occupancy (%) 86.45 87.92 88.03 65.14 86.61 85.00 85.13

loan spread (bps) 124.83 128.28 127.30 151.64 130.82 140.06 130.96

.

This table provides mean statistics for the 1,013 loans that defaulted within our total sample of 25,019 commercial mortgages. The header provides
the property types of multifamily/apartments (MF), o�ce (OF), retail (RT), lodging/hotel (LO), industrial (IN), and other (OT). Source: Intex.
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Table 3: NCREIF cap rate OLS regressions at National level with di�erent lead horizons

_cons hpi ue creditslope mortgagerate crechargeo� AdjRsq

ncrcap 0.1229351*** -0.0001663*** 0.0013552** -0.0000121 -0.0020652*** -0.0051508*** 0.7787

(0.0096087) (0.0000169) (0.0006557) (0.0000164) (0.0007501) (0.0009556)

ncrcap1qlead 0.1159048*** -0.0001641*** 0.0019079*** -0.000000447 -0.0016585** -0.0048744*** 0.7850

(0.0095583) (0.0000167) (0.0006505) (0.0000163) (0.0007471) (0.0009456)

ncrcap2qlead 0.1175822*** -0.0001702*** 0.0012491* 0.00000914 -0.0015143** -0.0037029*** 0.7807

(0.0097087) (0.0000169) (0.0006604) (0.0000166) (0.0007591) (0.0009578)

ncrcap3qlead 0.1074003*** -0.0001621*** 0.0017346*** 0.0000222 -0.0007768 -0.0036347*** 0.7906

(0.0095442) (0.0000167) (0.0006487) (0.0000165) (0.0007466) (0.0009402)

ncrcap4qlead 0.1041068*** -0.000161*** 0.0014758** 0.0000314* -0.0003436 -0.002943*** 0.8001

(0.0093689) (0.0000164) (0.0006387) (0.0000163) (0.0007325) (0.0009248)

This table summarizes the results of �ve OLS regression. The data is at the US-level for dependent and independent variables. The results
summarize the estimates,and Adjusted R-squared values of the OLS appear in the row adjacent to the dependent variable label. Standard errors
of the estimates appear in parentheses immediately below the estimates. The dependent variable is the US level NCREIF cap rate observed
with varying lead time ranging from no quarter leads (time t, 'ncrcap0qlead') to four quarter leads (time t+4, 'ncrcap4qlead'). The independent
variables are the FHFA house price index (`hpi'), the unemployment rate (`ue'), the corporate credit slope (Baa-Aaa), the conforming FNMA 30-
year mortgage rate (`mortgagerate'), and the commercial real estate charge o� rate (`crechargeo�'). ***/**/* indicate 1%, 5% and 10% signi�cance
levels.
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Table 4: OLS for 60 supralocations

Numeric Code, j Supralocations _cons crechargeo� creditslope hpi mortgagerate ue Adj R-sq
1 Alaska 0.0569*** -0.0375*** -0.0006*** 0.405** 0.0798*** -0.0298** 0.626
2 Alabama 0.3047*** -0.0391** -0.0007 -0.5896** -0.0186*** -0.0026** 0.441
3 Arkansas 0.1775*** 0.0546*** -0.0005*** 0.4682* -0.0126*** 0.0006* 0.245
4 Arizona 0.2881*** -0.0752*** -0.0008* 0.5189 -0.0140*** 0.0008*** 0.759
5 California 0.5511*** -0.0523*** -0.0011*** -0.1535* -0.0332*** -0.0143* 0.742
6 Colorado 0.3303*** -0.0580*** -0.0010*** -0.5307* -0.0189*** 0.0015 0.649
7 Connecticut 0.2765*** -0.0722*** -0.0006*** -0.2203** -0.0077*** -0.007 0.629
8 DC 0.52*** -0.0219*** -0.0009*** 0.2565 -0.0267*** -0.0218 0.548
9 Delaware 0.0339*** 1.4308*** -0.0046*** -2.9421*** 0.247*** -0.1141 0.983
10 Florida 0.3856*** -0.0152*** -0.0008*** 0.8226*** -0.0240*** -0.0115 0.761
11 Georgia 0.1364*** -0.0769*** -0.0010*** -0.5202 0.0005*** 0.0136*** 0.821
12 Hawaii 0.3829*** -0.0274*** -0.0009 -0.1171 -0.013*** -0.0215 0.623
13 Iowa 0.0202*** -0.0515*** 0*** 0.4004 0.026 0.0026 0.568
14 Idaho 0.3315*** -0.0625*** -0.0009*** -0.2528*** -0.0184*** -0.0012*** 0.737
15 Illinois 0.4298*** -0.0383*** -0.0008*** -0.0401*** -0.0288*** -0.0113 0.767
16 Indiana 0.2773*** -0.0400*** -0.0007*** -0.1236 -0.0134*** -0.005*** 0.741
17 Kansas 0.2395*** -0.0307*** -0.0009 -0.0785 -0.0053*** -0.0054*** 0.774
18 Kentucky 0.2954*** -0.0413*** -0.0006** -0.3258 -0.0139*** -0.0065 0.515
19 Louisiana 0.4238** -0.0379** -0.0015 0.5519 -0.0330 0.0052 0.784
20 Massachusetts 0.5507*** -0.0404*** -0.0012*** -0.3993 -0.0278*** -0.0269*** 0.8
21 Maryland 0.4053*** -0.0307*** -0.0007*** 0.7276*** -0.0229*** -0.0179*** 0.712
22 Maine 0.3362*** -0.0576*** -0.0009*** 0.0456 -0.0191*** -0.0022** 0.733
23 Michigan 0.2652*** -0.0386*** -0.0008*** 0.2468 -0.0158*** 0.0002 0.724
24 Minnesota 0.2325*** -0.0552*** -0.0007*** -0.4272 -0.0110*** 0.0026*** 0.725
25 Missouri 0.1342*** -0.0563*** -0.0004** -0.2168 -0.0002*** 0.0027 0.805
26 Mississippi 0.4247*** -0.0208*** -0.0008*** 0.3057 -0.0251*** -0.0154 0.849
27 Montana 0.3288*** -0.0614*** -0.0009*** -0.3168*** -0.0179*** -0.001*** 0.736
28 North Carolina 0.2397*** -0.0623*** -0.0007* -0.3741 -0.0104*** 0.0024 0.682
29 North Dakota 0.3320*** -0.0604*** -0.0009*** -0.1334 -0.0184*** -0.0034 0.734
30 Nebraska 0.1743*** -0.0690*** -0.0008** -1.2551 -0.017*** 0.0348 0.711
31 New Hampshire 0.3002*** -0.0452*** -0.0006*** -0.0097 -0.0115*** -0.0088 0.557
32 New Jersey 0.3882*** -0.0401*** -0.0009*** 0.4753 -0.0249*** -0.0074 0.717
33 New Mexico 0.1924*** -0.0502*** 0*** 0.7064*** -0.0146*** -0.0017 0.398
34 Nevada 0.3192*** -0.0148*** -0.0007 0.8142*** -0.0164*** -0.0102*** 0.746
35 New York 0.6344*** -0.0643*** -0.0013*** 0.1806 -0.0374*** -0.0239 0.719
36 Ohio 0.2349*** -0.0433*** -0.0008*** -0.2859*** -0.0166*** 0.0045* 0.811
37 Oklahoma 0.2700*** -0.0651*** -0.0010** -0.2651 -0.0179*** 0.0103 0.841
38 Oregon 0.4040*** -0.0393*** -0.0005*** 0.2554*** -0.0224*** -0.0154 0.733
39 Pennsylvania 0.4250*** -0.0318*** -0.0007*** 0.4223*** -0.0263*** -0.0173*** 0.726
40 Rhode Island 0.4475*** -0.0450*** -0.0010*** -0.2847*** -0.0191*** -0.0083*** 0.752
41 South Carolina 0.2412*** -0.0519*** -0.0015 -0.1773** 0.011*** -0.0001** 0.781
42 South Dakota 0.2268*** -0.0439*** -0.0011*** -0.5193 -0.0054*** 0.0054 0.622
43 Tennessee 0.2815*** -0.0675*** -0.0009** -0.5484 -0.0159*** 0.0107 0.742
44 Texas 0.2415*** -0.0546*** -0.0008*** 0.0745* -0.0147*** 0.0053 0.716
45 Utah 0.4293*** -0.0315*** -0.0008 -0.2909 -0.0246*** -0.0153*** 0.737
46 Virginia 0.2527*** -0.0339*** -0.0003*** 0.9157*** -0.0142*** -0.009 0.545
47 Vermont 0.4106*** -0.0215*** -0.0008*** 0.6612*** -0.0213*** -0.0220 0.634
48 Washington 0.3407** -0.0552*** -0.0009*** 0.0811 -0.0188*** -0.0052 0.735
49 Wisconsin 0.4150*** -0.0355*** -0.0010*** -0.0209* -0.0180*** -0.0134** 0.658
50 West Virginia 0.3853*** -0.0371*** -0.0009*** 0.199 -0.0288*** -0.007 0.629
51 Wyoming 0.0894*** -0.0108*** -0.0003*** 0.0125* -0.0051*** -0.0004*** 0.582
52 US - Nation 0.3521*** -0.055*** -0.0009*** 0.1391*** -0.0192*** -0.0068*** 0.82
53 East NorthCentral 0.3031*** -0.0499*** -0.0009*** -0.0025*** -0.0158*** -0.0025 0.817
54 Mideast 0.3405*** -0.0351*** -0.0008*** 0.1205*** -0.0184*** -0.008*** 0.731
55 Northeast 0.4692*** -0.0535*** -0.0009*** -0.1186 -0.0251*** -0.0175 0.76
56 Southeast 0.2953*** -0.0452*** -0.0008 -0.0062*** -0.0164*** -0.0011** 0.763
57 Southwest 0.4227*** -0.0456*** -0.0011*** -0.4465* -0.0240*** -0.009 0.786
58 Midwest 0.2082*** -0.0579*** -0.0006 0.1292** -0.0106*** 0.0042 0.729
59 West NorthCentral 0.2447*** -0.0637*** -0.0008*** -0.5812 -0.0046*** -0.0016 0.853
60 Western Paci�c 0.4676*** -0.0610*** -0.0010 -1.0840 -0.0150*** -0.0160*** 0.821

This table summarizes the estimates and R-squared values for the 60 supralocation OLS. ***/**/* indicate 1%, 5% and 10% signi�cance levels.
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Table 5: Distance examples for period 1 and period 80 for MSA=k=1

Period,t=1,k=MSA=1 Period,t=80,k=MSA=1

UEk HPIk j∈[1,60] UEj HPIj dkt UEk HPIk j∈[1,60] UEj HPIj dkt

5.4 -0.01601 1 10.6000 0.0179 2.3284 6.6 -0.0124 1 6.8000 -0.0247 0.9924
2 8.1000 0.0027 1.2700 2 10.4000 -0.0172 0.6947
3 8.6000 0.0109 1.7834 3 8.7000 0.0104 1.8692
4 7.9000 -0.0065 0.7541 4 10.4000 0.0071 1.6747
5 9.2000 -0.0104 0.7875 5 12.2000 -0.0074 0.9394
6 6.5000 0.0328 3.0536 6 8.1000 -0.0239 0.9549
7 8.1000 -0.0218 0.6178 7 9.1000 -0.0175 0.5580
8 8.9000 0.0045 1.4351 8 10.7000 0.0369 4.0232
9 6.3000 -0.0076 0.5523 9 7.6000 0.0358 3.8876
10 8.7000 -0.0028 1.0283 10 10.7000 -0.0035 0.9474
11 5.5000 -0.0042 0.7360 11 10.7000 -0.0039 0.9269
12 3.4000 -0.0528 2.3301 12 6.9000 -0.0380 2.0642
13 5.8000 0.0278 2.7393 13 5.2000 -0.0123 0.2123
14 7.8000 0.0293 2.8629 14 7.8000 -0.0250 1.0323
15 9.3000 0.0155 2.0941 15 10.4000 -0.0370 2.0619
16 6.9000 0.0227 2.4362 16 9.4000 -0.0030 0.8673
17 4.8000 0.0038 1.2448 17 6.8000 -0.0101 0.1911
18 7.9000 0.0012 1.1681
19 8.2000 0.0199 2.2991
20 9.4000 -0.0201 0.7834
21 7.4000 -0.0142 0.3876

This table shows distance calculations dk,t for periods t = 1 and t = 80 for k = 1.
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Table 6: Shannon Entropy score statistics for 402 MSAs

MSA# MSA Name Shannon Entropy Score

msa110 El Centro, CA 2.6763
msa402 Yuma, AZ 3.0657
msa38 Bismarck, ND 3.2579
msa216 Lincoln, NE 3.3058
msa11 Ames, IA 3.3515
msa121 Fargo, ND-MN 3.3561
msa341 Sioux Falls, SD 3.4296
msa300 Rapid City, SD 3.5861
msa274 Omaha-Council Blu�s, NE-IA 3.7183
msa53 Burlington-South Burlington, VT 3.7334
msa174 Iowa City, IA 3.7869
msa144 Grand Island, NE 3.7987
msa124 Fayetteville-Springdale-Rogers, AR-MO 3.8246
msa100 Des Moines-West Des Moines, IA 3.8252
msa143 Grand Forks, ND-MN 3.8259
msa218 Logan, UT-ID 3.8758
msa230 Mankato-North Mankato, MN 3.9029
msa227 Madison, WI 3.9038
msa81 Columbia, MO 3.9099
msa71 Cheyenne, WY 3.9345
msa63 Cedar Rapids, IA 3.9738
msa295 Provo-Orem, UT 3.9912
msa272 Oklahoma City, OK 4.0216
msa307 Rochester, MN 4.0270
msa229 Manhattan, KS 4.0317
msa159 Harrisonburg, VA 4.0372
msa10 Amarillo, TX 4.0387
msa383 Waterloo-Cedar Falls, IA 4.0437
msa79 College Station-Bryan, TX 4.0592
msa241 Minneapolis-St. Paul-Bloomington, MN-WI 4.0865
msa17 Asheville, NC 4.0881
msa228 Manchester-Nashua, NH 4.1014
msa209 Lawrence, KS 4.1106
msa310 Rockingham County-Stra�ord County, NH (MSAD) 4.1137
msa175 Ithaca, NY 4.1463
msa318 Salt Lake City, UT 4.1580
msa14 Ann Arbor, MI 4.1624
msa23 Austin-Round Rock, TX 4.1712
msa158 Harrisburg-Carlisle, PA 4.1776
msa104 Dubuque, IA 4.1878
msa291 Portland-South Portland, ME 4.2042
msa40 Bloomington, IL 4.2077
msa69 Charlottesville, VA 4.2265
msa197 La Crosse-Onalaska, WI-MN 4.2376
msa353 State College, PA 4.2396
msa35 Billings, MT 4.2436
msa340 Sioux City, IA-NE-SD 4.2514
msa166 Honolulu ('Urban Honolulu'), HI 4.2530
msa223 Lubbock, TX 4.2587
msa271 Ogden-Clear�eld, UT 4.2663
msa347 Spring�eld, MO 4.2795
msa382 Washington-Arlington-Alexandria, DC-VA-MD-WV (MSAD) 4.2849
msa335 Sheboygan, WI 4.2875
msa306 Roanoke, VA 4.2982
msa299 Raleigh, NC 4.2997
msa204 Lancaster, PA 4.3138
msa99 Denver-Aurora-Lakewood, CO 4.3157
msa214 Lexington-Fayette, KY 4.3240
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MSA# MSA Name Shannon Entropy Score

msa239 Midland, TX 4.3423
msa138 Gainesville, GA 4.3508
msa74 Cincinnati, OH-KY-IN 4.3513
msa16 Appleton, WI 4.3533
msa257 Nashville-Davidson--Murfreesboro--Franklin, TN 4.3534
msa50 Brunswick, GA 4.3610
msa45 Boulder, CO 4.3640
msa137 Gainesville, FL 4.3651
msa211 Lebanon, PA 4.3701
msa327 Santa Fe, NM 4.3798
msa359 Tallahassee, FL 4.3821
msa285 Phoenix-Mesa-Scottsdale, AZ 4.3835
msa172 Idaho Falls, ID 4.3844
msa106 Durham-Chapel Hill, NC 4.3924
msa65 Champaign-Urbana, IL 4.3924
msa349 St. Cloud, MN 4.3935
msa242 Missoula, MT 4.4009
msa395 Winchester, VA-WV 4.4072
msa18 Athens-Clarke County, GA 4.4073
msa130 Fort Collins, CO 4.4109
msa5 Albany-Schenectady-Troy, NY 4.4200
msa43 Boise City, ID 4.4227
msa354 Staunton-Waynesboro, VA 4.4242
msa236 Miami-Miami Beach-Kendall, FL (MSAD) 4.4248
msa84 Columbus, IN 4.4263
msa304 Richmond, VA 4.4378
msa153 Greenville-Anderson-Mauldin, SC 4.4526
msa21 Auburn-Opelika, AL 4.4723
msa332 Seattle-Bellevue-Everett, WA (MSAD) 4.4735
msa372 Valdosta, GA 4.4762
msa368 Tulsa, OK 4.4784
msa195 Knoxville, TN 4.4814
msa350 St. George, UT 4.4923
msa58 Cape Coral-Fort Myers, FL 4.4956
msa367 Tucson, AZ 4.4987
msa276 Oshkosh-Neenah, WI 4.4999
msa173 Indianapolis-Carmel-Anderson, IN 4.5081
msa385 Wausau, WI 4.5110
msa62 Casper, WY 4.5122
msa82 Columbia, SC 4.5134
msa199 Lafayette-West Lafayette, IN 4.5138
msa320 San Antonio-New Braunfels, TX 4.5180
msa399 York-Hanover, PA 4.5204
msa190 Kansas City, MO-KS 4.5233
msa85 Columbus, OH 4.5306
msa70 Chattanooga, TN-GA 4.5318
msa182 Je�erson City, MO 4.5340
msa212 Lewiston, ID-WA 4.5341
msa94 Davenport-Moline-Rock Island, IA-IL 4.5346
msa363 The Villages, FL 4.5445
msa319 San Angelo, TX 4.5546
msa249 Morgantown, WV 4.5564
msa116 Enid, OK 4.5564
msa222 Louisville/Je�erson County, KY-IN 4.5587
msa39 Blacksburg-Christiansburg-Radford, VA 4.5633
msa171 Huntsville, AL 4.5634
msa292 Portland-Vancouver-Hillsboro, OR-WA 4.5651
msa345 Spring�eld, IL 4.5704
msa54 California-Lexington Park, MD 4.5751
msa303 Reno, NV 4.5753
msa168 Houma-Thibodaux, LA 4.5764
msa378 Waco, TX 4.5820
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msa256 Naples-Immokalee-Marco Island, FL 4.5836
msa146 Grand Rapids-Wyoming, MI 4.5841
msa177 Jackson, MS 4.5882
msa44 Boston, MA (MSAD) 4.5898
msa114 Elkhart-Goshen, IN 4.5914
msa28 Baton Rouge, LA 4.5936
msa224 Lynchburg, VA 4.5956
msa90 Dallas-Plano-Irving, TX (MSAD) 4.5986
msa265 North Port-Sarasota-Bradenton, FL 4.6014
msa210 Lawton, OK 4.6125
msa68 Charlotte-Concord-Gastonia, NC-SC 4.6177
msa205 Lansing-East Lansing, MI 4.6218
msa163 Hilton Head Island-Blu�ton-Beaufort, SC 4.6288
msa365 Topeka, KS 4.6390
msa103 Dover, DE 4.6442
msa169 Houston-The Woodlands-Sugar Land, TX 4.6449
msa75 Clarksville, TN-KY 4.6459
msa217 Little Rock-North Little Rock-Conway, AR 4.6527
msa330 Savannah, GA 4.6528
msa376 Virginia Beach-Norfolk-Newport News, VA-NC 4.6540
msa80 Colorado Springs, CO 4.6597
msa179 Jacksonville, FL 4.6649
msa240 Milwaukee-Waukesha-West Allis, WI 4.6665
msa46 Bowling Green, KY 4.6698
msa140 Gettysburg, PA 4.6756
msa255 Napa, CA 4.6803
msa77 Cleveland-Elyria, OH 4.6836
msa391 Wichita, KS 4.6901
msa129 Fond du Lac, WI 4.6903
msa55 Cambridge-Newton-Framingham, MA (MSAD) 4.6920
msa374 Victoria, TX 4.6972
msa109 Eau Claire, WI 4.6976
msa283 Peoria, IL 4.6985
msa41 Bloomington, IN 4.6989
msa13 Anchorage, AK 4.7023
msa396 Winston-Salem, NC 4.7035
msa149 Greeley, CO 4.7035
msa198 Lafayette, LA 4.7053
msa293 Prescott, AZ 4.7062
msa87 Corvallis, OR 4.7065
msa67 Charleston-North Charleston, SC 4.7083
msa148 Great Falls, MT 4.7096
msa287 Pittsburgh, PA 4.7167
msa19 Atlanta-Sandy Springs-Roswell, GA 4.7171
msa352 St. Louis, MO-IL 4.7291
msa6 Albuquerque, NM 4.7367
msa270 Odessa, TX 4.7377
msa91 Dalton, GA 4.7377
msa235 Merced, CA 4.7385
msa88 Crestview-Fort Walton Beach-Destin, FL 4.7405
msa193 Kingsport-Bristol-Bristol, TN-VA 4.7429
msa380 Warner Robins, GA 4.7445
msa384 Watertown-Fort Drum, NY 4.7492
msa390 Wichita Falls, TX 4.7496
msa233 Medford, OR 4.7515
msa339 Silver Spring-Frederick-Rockville, MD (MSAD) 4.7540
msa47 Bremerton-Silverdale, WA 4.7562
msa275 Orlando-Kissimmee-Sanford, FL 4.7591
msa48 Bridgeport-Stamford-Norwalk, CT 4.7655
msa180 Jacksonville, NC 4.7657
msa7 Alexandria, LA 4.7674
msa187 Kahului-Wailuku-Lahaina, HI 4.7685
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msa93 Daphne-Fairhope-Foley, AL 4.7685
msa131 Fort Lauderdale-Pompano Beach-Deer�eld Beach, FL (MSAD) 4.7685
msa37 Birmingham-Hoover, AL 4.7774
msa150 Green Bay, WI 4.7785
msa52 Burlington, NC 4.7786
msa360 Tampa-St. Petersburg-Clearwater, FL 4.7786
msa194 Kingston, NY 4.7801
msa298 Racine, WI 4.7811
msa244 Modesto, CA 4.7816
msa397 Worcester, MA-CT 4.7818
msa78 Coeur d'Alene, ID 4.7864
msa388 West Palm Beach-Boca Raton-Delray Beach, FL (MSAD) 4.7908
msa59 Cape Girardeau, MO-IL 4.7914
msa151 Greensboro-High Point, NC 4.7917
msa4 Albany, OR 4.7919
msa64 Chambersburg-Waynesboro, PA 4.7951
msa181 Janesville-Beloit, WI 4.7978
msa26 Bangor, ME 4.7997
msa373 Vallejo-Fair�eld, CA 4.8004
msa282 Pensacola-Ferry Pass-Brent, FL 4.8024
msa324 San Luis Obispo-Paso Robles-Arroyo Grande, CA 4.8030
msa142 Goldsboro, NC 4.8080
msa370 Tyler, TX 4.8095
msa273 Olympia-Tumwater, WA 4.8106
msa208 Las Vegas-Henderson-Paradise, NV 4.8122
msa105 Duluth, MN-WI 4.8127
msa34 Bend-Redmond, OR 4.8151
msa329 Santa Rosa, CA 4.8161
msa1 Abilene, TX 4.8170
msa133 Fort Wayne, IN 4.8199
msa132 Fort Smith, AR-OK 4.8210
msa186 Joplin, MO 4.8222
msa101 Detroit-Dearborn-Livonia, MI (MSAD) 4.8243
msa301 Reading, PA 4.8248
msa119 Evansville, IN-KY 4.8275
msa145 Grand Junction, CO 4.8295
msa51 Bu�alo-Cheektowaga-Niagara Falls, NY 4.8306
msa226 Madera, CA 4.8378
msa358 Tacoma-Lakewood, WA (MSAD) 4.8428
msa266 Norwich-New London, CT 4.8443
msa348 Spring�eld, OH 4.8451
msa139 Gary, IN (MSAD) 4.8463
msa342 South Bend-Mishawaka, IN-MI 4.8467
msa260 New Haven-Milford, CT 4.8478
msa161 Hattiesburg, MS 4.8504
msa369 Tuscaloosa, AL 4.8519
msa401 Yuba City, CA 4.8544
msa336 Sherman-Denison, TX 4.8555
msa178 Jackson, TN 4.8559
msa247 Montgomery County-Bucks County-Chester County, PA (MSAD) 4.8561
msa394 Wilmington, NC 4.8582
msa89 Cumberland, MD-WV 4.8587
msa277 Owensboro, KY 4.8587
msa118 Eugene, OR 4.8589
msa248 Montgomery, AL 4.8622
msa188 Kalamazoo-Portage, MI 4.8636
msa152 Greenville, NC 4.8653
msa323 San Jose-Sunnyvale-Santa Clara, CA 4.8655
msa381 Warren-Troy-Farmington Hills, MI (MSAD) 4.8671
msa33 Bellingham, WA 4.8674
msa225 Macon, GA 4.8682
msa313 Sacramento--Roseville--Arden-Arcade, CA 4.8694
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msa24 Bakers�eld, CA 4.8705
msa83 Columbus, GA-AL 4.8707
msa102 Dothan, AL 4.8723
msa25 Baltimore-Columbia-Towson, MD 4.8737
msa2 Akron, OH 4.8746
msa176 Jackson, MI 4.8751
msa267 Oakland-Hayward-Berkeley, CA (MSAD) 4.8765
msa281 Parkersburg-Vienna, WV 4.8796
msa96 Decatur, AL 4.8845
msa279 Palm Bay-Melbourne-Titusville, FL 4.8858
msa201 Lake County-Kenosha County, IL-WI (MSAD) 4.8861
msa112 Elgin, IL (MSAD) 4.8868
msa362 Texarkana, TX-AR 4.8876
msa165 Homosassa Springs, FL 4.8881
msa157 Hanford-Corcoran, CA 4.8978
msa57 Canton-Massillon, OH 4.8987
msa263 Newark, NJ-PA (MSAD) 4.9031
msa312 Rome, GA 4.9058
msa185 Jonesboro, AR 4.9064
msa366 Trenton, NJ 4.9076
msa315 Salem, OR 4.9083
msa36 Binghamton, NY 4.9107
msa254 Myrtle Beach-Conway-North Myrtle Beach, SC-NC 4.9107
msa314 Saginaw, MI 4.9130
msa122 Farmington, NM 4.9146
msa311 Rocky Mount, NC 4.9169
msa290 Port St. Lucie, FL 4.9192
msa219 Longview, TX 4.9246
msa246 Monroe, MI 4.9254
msa183 Johnson City, TN 4.9261
msa322 San Francisco-Redwood City-South San Francisco, CA (MSAD) 4.9266
msa269 Ocean City, NJ 4.9294
msa98 Deltona-Daytona Beach-Ormond Beach, FL 4.9320
msa156 Hammond, LA 4.9348
msa328 Santa Maria-Santa Barbara, CA 4.9357
msa141 Glens Falls, NY 4.9369
msa192 Killeen-Temple, TX 4.9372
msa243 Mobile, AL 4.9377
msa86 Corpus Christi, TX 4.9379
msa261 New Orleans-Metairie, LA 4.9379
msa207 Las Cruces, NM 4.9399
msa308 Rochester, NY 4.9478
msa162 Hickory-Lenoir-Morganton, NC 4.9523
msa155 Hagerstown-Martinsburg, MD-WV 4.9524
msa393 Wilmington, DE-MD-NJ (MSAD) 4.9524
msa251 Mount Vernon-Anacortes, WA 4.9534
msa284 Philadelphia, PA (MSAD) 4.9581
msa126 Flint, MI 4.9604
msa29 Battle Creek, MI 4.9631
msa134 Fort Worth-Arlington, TX (MSAD) 4.9653
msa245 Monroe, LA 4.9659
msa108 East Stroudsburg, PA 4.9672
msa379 Walla Walla, WA 4.9682
msa9 Altoona, PA 4.9683
msa127 Florence, SC 4.9689
msa321 San Diego-Carlsbad, CA 4.9693
msa333 Sebastian-Vero Beach, FL 4.9708
msa258 Nassau County-Su�olk County, NY (MSAD) 4.9734
msa364 Toledo, OH 4.9744
msa392 Williamsport, PA 4.9749
msa346 Spring�eld, MA 4.9762
msa147 Grants Pass, OR 4.9766
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msa351 St. Joseph, MO-KS 4.9779
msa316 Salinas, CA 4.9785
msa289 Pocatello, ID 4.9800
msa252 Muncie, IN 4.9813
msa123 Fayetteville, NC 4.9848
msa170 Huntington-Ashland, WV-KY-OH 4.9854
msa135 Fresno, CA 4.9912
msa264 Niles-Benton Harbor, MI 4.9915
msa189 Kankakee, IL 4.9929
msa203 Lakeland-Winter Haven, FL 4.9934
msa286 Pine Blu�, AR 4.9934
msa107 Dutchess County-Putnam County, NY (MSAD) 4.9955
msa334 Sebring, FL 4.9967
msa27 Barnstable Town, MA 4.9970
msa49 Brownsville-Harlingen, TX 4.9970
msa200 Lake Charles, LA 4.9977
msa296 Pueblo, CO 4.9981
msa259 New Bern, NC 5.0000
msa128 Florence-Muscle Shoals, AL 5.0018
msa115 Elmira, NY 5.0032
msa113 Elizabethtown-Fort Knox, KY 5.0034
msa220 Longview, WA 5.0039
msa111 El Paso, TX 5.0061
msa389 Wheeling, WV-OH 5.0071
msa125 Flagsta�, AZ 5.0075
msa120 Fairbanks, AK 5.0125
msa356 Sumter, SC 5.0204
msa72 Chicago-Naperville-Arlington Heights, IL (MSAD) 5.0220
msa344 Spokane-Spokane Valley, WA 5.0234
msa213 Lewiston-Auburn, ME 5.0269
msa66 Charleston, WV 5.0331
msa294 Providence-Warwick, RI-MA 5.0346
msa325 San Rafael, CA (MSAD) 5.0361
msa95 Dayton, OH 5.0370
msa215 Lima, OH 5.0394
msa160 Hartford-West Hartford-East Hartford, CT 5.0398
msa250 Morristown, TN 5.0398
msa73 Chico, CA 5.0424
msa167 Hot Springs, AR 5.0428
msa305 Riverside-San Bernardino-Ontario, CA 5.0432
msa12 Anaheim-Santa Ana-Irvine, CA (MSAD) 5.0441
msa76 Cleveland, TN 5.0460
msa42 Bloomsburg-Berwick, PA 5.0473
msa191 Kennewick-Richland, WA 5.0494
msa196 Kokomo, IN 5.0507
msa206 Laredo, TX 5.0520
msa357 Syracuse, NY 5.0529
msa400 Youngstown-Warren-Boardman, OH-PA 5.0563
msa262 New York-Jersey City-White Plains, NY-NJ (MSAD) 5.0573
msa377 Visalia-Porterville, CA 5.0625
msa337 Shreveport-Bossier City, LA 5.0681
msa20 Atlantic City-Hammonton, NJ 5.0683
msa117 Erie, PA 5.0698
msa231 Mans�eld, OH 5.0707
msa238 Midland, MI 5.0711
msa343 Spartanburg, SC 5.0711
msa234 Memphis, TN-MS-AR 5.0729
msa268 Ocala, FL 5.0745
msa202 Lake Havasu City-Kingman, AZ 5.0747
msa136 Gadsden, AL 5.0763
msa317 Salisbury, MD-DE 5.0765
msa184 Johnstown, PA 5.0812
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msa309 Rockford, IL 5.0820
msa221 Los Angeles-Long Beach-Glendale, CA (MSAD) 5.0825
msa8 Allentown-Bethlehem-Easton, PA-NJ 5.0838
msa237 Michigan City-La Porte, IN 5.0838
msa326 Santa Cruz-Watsonville, CA 5.0876
msa280 Panama City, FL 5.1008
msa61 Carson City, NV 5.1025
msa32 Beckley, WV 5.1042
msa371 Utica-Rome, NY 5.1184
msa361 Terre Haute, IN 5.1194
msa154 Gulfport-Biloxi-Pascagoula, MS 5.1222
msa386 Weirton-Steubenville, WV-OH 5.1261
msa56 Camden, NJ (MSAD) 5.1312
msa355 Stockton-Lodi, CA 5.1318
msa297 Punta Gorda, FL 5.1319
msa164 Hinesville, GA 5.1392
msa97 Decatur, IL 5.1528
msa92 Danville, IL 5.1543
msa288 Pitts�eld, MA 5.1549
msa387 Wenatchee, WA 5.1577
msa302 Redding, CA 5.1774
msa331 Scranton--Wilkes-Barre--Hazleton, PA 5.1775
msa15 Anniston-Oxford-Jacksonville, AL 5.1792
msa22 Augusta-Richmond County, GA-SC 5.1826
msa232 McAllen-Edinburg-Mission, TX 5.1871
msa3 Albany, GA 5.1919
msa338 Sierra Vista-Douglas, AZ 5.1972
msa253 Muskegon, MI 5.2002
msa60 Carbondale-Marion, IL 5.2075
msa31 Beaumont-Port Arthur, TX 5.2103
msa278 Oxnard-Thousand Oaks-Ventura, CA 5.2176
msa398 Yakima, WA 5.2378
msa30 Bay City, MI 5.2455
msa375 Vineland-Bridgeton, NJ 5.2524

mean 4.7004
standard deviation 0.3844

This table shows the rank ordered summary statistics (from lowest to highest) for 402 Shannon Entropy scores calculated from the synthetic MSA
cap rates and actual supralocational cap rates over the period Q4 1991 to Q2 2015.
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Table 7: Mean square errors from LOOCV test

Numeric Code, j ∈ [1, 60] Supralocations Mean Square Error

40 Rhode Island 0.35%
60 NCREIF_Western Paci�c 0.39%
57 NCREIF_Southwest 0.45%
30 Nebraska 0.47%
53 NCREIF_East North Central 0.47%
59 NCREIF_West North Central 0.49%
6 Colorado 0.51%
13 Iowa 0.52%
17 Kansas 0.55%
18 Kentucky 0.55%
56 NCREIF_Southeast 0.56%
27 Montana 0.57%
43 Tennessee 0.61%
16 Indiana 0.63%
31 New Hampshire 0.64%
29 North Dakota 0.65%
14 Idaho 0.66%
55 NCREIF_Northeast 0.68%
24 Minnesota 0.68%
2 Alabama 0.69%
35 New York 0.73%
1 Alaska 0.76%
58 NCREIF_Midwest 0.81%
9 Delaware 0.84%
46 Virginia 0.88%
48 Washington 0.89%
37 Oklahoma 0.91%
28 North Carolina 0.95%
47 Vermont 0.99%
50 West Virginia 1.14%
51 Wyoming 1.27%
23 Michigan 1.46%
19 Louisiana 1.54%
45 Utah 1.76%
8 Washington, DC 2.25%
12 Hawaii 2.45%
41 South Carolina 2.51%
39 Pennsylvania 3.30%
22 Maine 3.40%
20 Massachusetts 3.62%
52 US - nation 4.65%
15 Illinois 4.73%
10 Florida 5.13%
25 Missouri 6.09%
38 Oregon 7.24%
5 California 7.34%
7 Connecticut 7.72%
11 Georgia 8.25%
21 Maryland 8.67%
26 Mississippi 8.88%
3 Arkansas 11.67%
42 South Dakota 12.95%
4 Arizona 14.13%
34 Nevada 14.43%
33 New Mexico 19.06%
44 Texas 23.19%
54 NCREIF_Mideast 24.25%
49 Wisconsin 27.04%
36 Ohio 27.18%
32 New Jersey 31.65%

MSE - All 5.30%

This table summarizes the mean square errors (MSE) computed using the Leave One Amount Cross-Validation (LOOCV) technique. The columns
provide the numerical code, the name of the j-th supralocation and the MSE from the LOOCV test, respectively. The average MSE was 5.30% as
reported in the �nal row of the table.
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Table 8: Paired t-test and summary statistics

Total Loans Non-Defaulted Loans Defaulted Loans

actualcap SCX actualcap SCX actualcap SCX

Mean 0.07007 0.07378 0.06994 0.07367 0.07307 0.07654
Variance 0.00045 0.00006 0.00044 0.00006 0.00088 0.00004

Observations 25,083 25,083 24,071 24,071 1,012 1,012
Pearson Correlation -0.05965 -0.06334 -0.04198

Hypothesized Mean Di�erence 0.00000 0.00000 0.00000
df 25,082 24,070 1,011

t Stat -25.35452 -25.30470 -3.60033
P(T<=t) one-tail 0.00000 0.00000 0.00017
t Critical one-tail 1.64491 1.64492 1.64636
P(T<=t) two-tail 0.00000 0.00000 0.00033
t Critical two-tail 1.96006 1.96006 1.96231

This table provides the summary results for the paired t-test applied to the actual and synthetic cap rates corresponding to the origination date
on 25,101 CRE transactions. The reported statistics are for the non-defaulted and defaulted subsets. Cap rates greater than 50% were excluded.

Table 9: Cumulative lending probabilities at or below cap rate upper boundaries

Total Loans Non Defaulted Loans Defaulted Loans

Cap Rate actualcap SCX actualcap SCX actualcap SCX

7.00% 0.4987 0.3167 0.5011 0.3229 0.4588 0.1439
6.00% 0.3183 0.0411 0.3170 0.0433 0.3300 0.0036
5.00% 0.1732 0.0014 0.1698 0.0015 0.2188 0.0000
4.00% 0.0792 0.0000 0.0758 0.0000 0.1329 0.0000
3.00% 0.0301 0.0000 0.0279 0.0000 0.0736 0.0000

This table provides the results for the paired t-test applied to the actual and synthetic cap rates corresponding to the origination date on 25101
CRE transactions. The statistics are for non-defaulted and defaulted subsets. We exclude actual cap rates greater than 50%.

Table 10: Valuation statistics

properties

all non defaulted defaulted

number of properties 25083 24071 1012
synthetic value $628,295,272,395 $610,603,768,427 $17,691,503,967
actual UW value $706,124,906,978 $685,863,114,677 $20,261,792,301

di�erence $(77,829,634,583) $(75,259,346,250) $(2,570,288,334)
ratio (wtd mean) synthetic/actual 0.88978 0.89027 0.87315

nominal mean synth/actual 0.96266 0.96269 0.96198
nominal min synth/actual 0.20617 0.20617 0.20617
nominal max synth/actual 5.69317 5.69317 4.23399

nominal median synth/actual 0.92843 0.93052 0.89363
nominal kurtosis synth/actual 24.96369 25.99173 12.13431
nominal stdev synth/actual 0.31301 0.30835 0.40873

This table provides valuation statistics for the private loan data using actual cap rates and corresponding SCXs at the point of origination. Source:
Intex.
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Table 11: Logistic regression - Treatment 1

Panel A: All Panel B: CBD only Panel C: Non CBD only

(i) (ii) (i) (ii) (i) (ii)

cons -3.228507*** -6.571107*** -3.9056897*** -7.15312*** -3.128669*** -6.455659***
(0.0441904) (0.3387108) (.1558658) (0.874274) (0.0491975) (0.3685678)

caprate (actual) .8331781** 4.894396*** 0.5957658
(.4177213) (1.807289) (0.4770939)

caprate (SCX) 46.32364*** 48.85778*** 45.88012***
(4.526286) (11.65481) (4.927489)

Adj-Pseudo R-sq 0.0002 0.0041 0.0015 0.0031 0.0001 0.0043
Prob chi2 0.0461 0.0000 0.0068 0.0000 0.2118 0.0000

Obs 25101 25101 5195 5195 19906 19906

This table shows the results of logistic regressions with 0,1 indicator of loan default for the sample. The independent variables are:actual cap rate
in columns (i) msa synthetic cap rate (SCX) in columns (ii). Panel A captures the entire sample; Panel B the CBD properties; and Panel C the
non-CBD properties. Estimates are provided along with standard errors in parentheses. ***/**/*/' indicate 0.1%, 1%, 5% and 10% signi�cance
for Wald z-values

Table 12: Logistic regression - Treatment 2

Panel A: All Panel B: CBD only Panel C: Non CBD only

(i) (ii) (i) (ii) (i) (ii)
_cons -2.135964*** -5.445156*** -2.51904*** -5.755882*** -1.642249*** -4.926696***

(0.2221568) (0.4036153) (0.5220886) (1.002803) (0.2321479) (0.4326184)
caprate (actual) 0.6873697 4.242379*** 0.5254299

(0.4414735) (1.846048) (0.5005424)
caprate (SCX) 46.00407*** 48.65101*** 45.53765***

(4.573642) (11.72515) (4.968723)
occpct -0.0129654*** -0.0133184*** -0.0128622*** -0.0134254*** -0.0129051*** -0.0133027***

(0.0015615) (0.0015635) (0.0040888) (0.0040364) (0.0016923) (0.001696)
propage -0.0137843*** -0.0116875*** -0.0125176* -0.0124223* -0.0139661*** -0.0114937***

(0.0033768) (0.003344) (0.007349) (0.0072263) (0.0037987) (0.0037801)
cbd 0.4487141*** 0.4505224***

(0.0920274) (0.092203)
prp_fxd -0.2044051 -0.2146195 -0.0843447 -0.0759683 -0.2427588 -0.2522155

(0.1567765) (0.1571089) (0.3503293) (0.350645) (0.1753219) (0.1757145)

Adj-Pseudo R-sq 0.0047 0.0085 0.0034 0.0061 0.0038 0.0080
Prob chi2 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000

Obs 25101 25101 5195 5195 19906 19906

This table shows the results of logistic regressions with 0,1 indicator of loan default for the sample. The independent variables are:actual cap rate
in columns (i) msa synthetic cap rate (SCX) in columns (ii). Panel A captures the entire sample; Panel B the CBD properties; and Panel C the
non-CBD properties. Estimates are provided along with standard errors in parentheses. ***/**/*/' indicate 0.1%, 1%, 5% and 10% signi�cance
for Wald z-values
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Table 13: Logistic regression - Treatment 3

Panel A: All Panel B: CBD only Panel C: non-CBD only

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

_cons -1.795667*** -4.039471*** -1.097695*** -3.498225*** -2.164676*** -4.154393*** -1.460711** -3.67379*** -1.326086*** -3.561278*** -0.6271674** -3.011455***
(0.2235718) (0.4660155) (0.2716481) (0.4817134) (0.5249973) (1.179183) (0.6564918) (1.229433) (0.2332104) (0.4994363) (0.2873467) (0.5161302)

caprate (actual) 0.9138623*** 0.9155617*** 5.006876*** 5.081549*** 0.7532925* 0.7503497*
(0.4140675) (0.417609) (1.934122) (1.912539) (0.4397526) (0.4408342)

caprate (SCX) 30.05074*** 33.4522*** 30.45716** 34.55862** 29.94889*** 33.26209***
(5.325379) (5.439026) (13.75627) (14.31072) (5.777469) (5.883821)

occpct -0.0131264*** -0.0133039*** -0.0131963*** -0.0134009*** -0.0126872*** -0.0133576*** -0.0126349*** -0.0132959*** -0.013111*** -0.0132988*** -0.0132014*** -0.0134228***
(0.001555) (0.0015575) (0.0015576) (0.0015605) (0.0040816) (0.0040248) (0.00408) (0.0040245) (0.0016855) (0.0016894) (0.001689) (0.0016935)

propage -0.011782*** -0.0110729*** -0.0117838*** -0.0110209*** -0.0121205 -0.0124782* -0.0120805 -0.0124056* -0.0115546*** -0.010705*** -0.0115501*** -0.0106502***
(0.0033626) (0.0033447) (0.003364) (0.0033448) (0.0074021) (0.0073026) (0.0074042) (0.0072983) (0.0037859) (0.0037778) (0.003787) (0.0037777)

cbd 0.4340318*** 0.4428436*** 0.4347555*** 0.444102***
(0.0922478) (0.0922991) (0.0922891) (0.0923434)

prp_fxd -0.1468917 -0.1669184 -0.1539132 -0.1778631 -0.0392335 -0.0317022 -0.0507974 -0.0425155 -0.1816708 -0.2032251 -0.1873637 -0.2141602
(0.1573038) (0.1574485) (0.1574304) (0.1575736) (0.3512744) (0.3512873) (0.3515278) (0.3515253) (0.1759596) (0.1761186) (0.1761099) (0.176264)

lend_fxd -0.7003789*** -0.4872252*** -0.8027001*** -0.5955145*** -0.8012297*** -0.534565*** -0.894481*** -0.6266869*** -0.687417*** -0.4796798*** -0.7917612*** -0.5903175***
(0.0647368) (0.0734939) (0.068053) (0.075003) (0.1717053) (0.197639) (0.1784187) (0.199032) (0.0699762) (0.0791817) (0.0737219) (0.0810013)

vix -0.0434109*** -0.0493803*** -0.0449567* -0.0503346* -0.0433049*** -0.0491935***
(0.0097565) (0.0098353) (0.0257139) (0.0259446) (0.0105545) (0.0106327)

Pseudo R-sq 0.0096 0.0107 0.0105 0.0113 0.0079 0.0068 0.0084 0.0072 0.0089 0.0099 0.0098 0.0108
Prob chi2 0..000 0..000 0..000 0..000 0..000 0..000 0..000 0..000 0..000 0..000 0..000 0..000

Obs 25101 25101 25101 25101 5195 5195 5195 5195 19906 19906 19906 19906

This table shows the results of logistic regressions with 0,1 indicator of loan default for the sample. The independent variables are:actual cap rate in columns (i) msa synthetic cap rate (SCX) in columns
(ii). Panel A captures the entire sample; Panel B the CBD properties; and Panel C the non-CBD properties. Estimates are provided along with standard errors in parentheses. ***/**/*/' indicate 0.1%,
1%, 5% and 10% signi�cance for Wald z-values



Table 14: Forecast SCXs for top 25 MSAs (by workforce) 12/2019:6/2022

MSA % US workforce Dec-19 Mar-20 Jun-20 Sep-20 Dec-20 Mar-21 Jun-21 Sep-21 Dec-21 Mar-22 Jun-22 6/21 6/22

Detroit-Warren-Dearborn, MI 1.47% 6.73% 6.46% 6.24% 6.26% 6.37% 5.96% 8.56% 8.39% 7.55% 5.99% 5.76% 183.24 -280.26
Orlando-Kissimmee-Sanford, FL 0.92% 6.18% 5.74% 5.53% 5.44% 5.57% 5.45% 8.02% 8.73% 7.47% 5.64% 5.38% 183.71 -263.84

LosAngeles-LongBeach-Anaheim,CA 4.81% 6.46% 6.09% 5.86% 5.75% 5.82% 6.22% 8.35% 8.24% 7.67% 6.48% 6.15% 189.30 -220.02
Philadelphia-Camden-Wilmington,PA-NJ-DE-MD 2.23% 6.55% 6.13% 5.89% 5.80% 5.93% 6.26% 7.91% 7.39% 7.30% 6.14% 5.81% 136.35 -209.67

Dallas-FortWorth-Arlington, TX 2.93% 6.72% 6.24% 5.91% 5.93% 6.09% 6.21% 6.92% 6.52% 5.72% 5.87% 4.86% 20.41 -206.66
Chicago-Naperville-Elgin, IL-IN-WI 3.38% 6.53% 6.08% 5.81% 5.76% 5.89% 5.92% 7.34% 6.86% 6.60% 5.96% 5.51% 81.02 -183.68

St. Louis, MO-IL 1.05% 6.74% 6.32% 5.94% 6.04% 6.09% 5.96% 6.18% 5.77% 5.58% 5.71% 4.49% -56.32 -168.49
Miami-FortLauderdale-PompanoBeach, FL 2.23% 6.43% 6.04% 5.81% 5.69% 5.85% 5.89% 7.20% 6.97% 6.40% 5.93% 5.53% 76.98 -166.99

Baltimore-Columbia-Towson, MD 1.06% 6.44% 5.94% 5.66% 5.57% 5.72% 5.71% 6.75% 6.38% 5.74% 5.60% 5.15% 30.90 -160.29
NewYork-Newark-JerseyCity, NY-NJ-PA 7.09% 6.63% 6.16% 5.91% 5.84% 5.98% 5.83% 7.67% 7.41% 7.49% 6.35% 6.11% 103.97 -156.40

Seattle-Tacoma-Bellevue, WA 1.58% 6.59% 6.15% 5.90% 5.83% 5.91% 6.14% 6.76% 6.42% 5.69% 5.62% 5.22% 17.84 -153.97
Riverside-San Bernardino-Ontario, CA 1.52% 6.48% 6.10% 5.87% 5.78% 5.87% 5.94% 7.27% 7.17% 6.68% 6.03% 5.73% 79.38 -153.62

Phoenix-Mesa-Scottsdale, AZ 1.84% 6.53% 6.22% 5.98% 5.93% 6.00% 6.01% 6.71% 5.98% 5.92% 5.81% 5.43% 18.15 -128.63
Portland-Vancouver-Hillsboro, OR-WA 0.96% 7.07% 6.52% 6.26% 6.20% 6.33% 6.49% 6.29% 5.99% 5.60% 5.67% 5.01% -78.01 -127.22

Houston-The Woodlands-Sugar Land, TX 2.46% 6.84% 6.36% 6.12% 6.08% 6.26% 6.13% 6.51% 6.43% 5.82% 6.09% 5.49% -32.54 -102.08
Tampa-St. Petersburg-Clearwater, FL 1.15% 6.29% 5.97% 5.74% 5.72% 5.78% 5.57% 6.37% 6.13% 5.65% 5.56% 5.50% 8.54 -87.71
Charlotte-Concord-Gastonia, NC-SC 0.99% 6.93% 6.53% 6.33% 6.33% 6.43% 6.37% 6.03% 5.73% 5.49% 5.82% 5.16% -89.64 -87.26
Atlanta-Sandy Springs-Roswell, GA 2.26% 6.77% 6.28% 6.00% 6.07% 6.18% 6.02% 5.83% 5.52% 5.36% 5.57% 5.07% -94.85 -75.91

Washington-Arlington-Alexandria, DC-VA-MD-WV 2.42% 6.79% 6.47% 6.29% 6.25% 6.33% 6.31% 6.69% 6.44% 6.20% 6.21% 5.97% -10.62 -72.29
Boston-Cambridge-Newton, MA-NH 2.00% 6.46% 6.15% 5.94% 5.84% 5.90% 5.89% 6.26% 6.15% 6.02% 5.74% 5.72% -20.16 -53.95

Denver-Aurora-Lakewood, CO 1.23% 6.95% 6.59% 6.41% 6.41% 6.48% 6.32% 6.05% 5.88% 5.74% 5.98% 5.58% -90.67 -46.56
San Diego-Carlsbad, CA 1.12% 6.59% 6.29% 6.10% 6.01% 6.08% 6.13% 6.24% 6.09% 5.84% 5.88% 5.78% -35.07 -45.81

Minneapolis-St. Paul-Bloomington, MN-WI 1.43% 6.85% 6.52% 6.31% 6.31% 6.42% 6.21% 6.10% 5.93% 5.82% 6.05% 5.78% -74.77 -32.48
Austin-Round Rock, TX 0.92% 7.06% 6.59% 6.45% 6.47% 6.59% 6.33% 5.22% 5.17% 5.35% 5.68% 5.08% -184.15 -13.88

San Francisco-Oakland-Berkeley, CA 1.79% 6.95% 6.58% 6.33% 6.27% 6.35% 6.26% 5.75% 5.63% 5.42% 5.91% 5.72% -119.77 -3.96

This table shows SCXs for the top 25 MSA by eligible workforce in the US. The �rst column provides the MSA name, the second column the percent of the US workforce located in the MSA. The third
through thirteenth columns provide the 12 month forecasted SCXs based on data from the prior 12 month period, from December 2019 through June 2022. The �fteenth and sixteenth columns show
changes in bps for the projected SCXs from December 2019 to June 2021 and June 2021 to June 2022, respectively. The table data is reported with sort from smallest to largest changes captured in the
last (change from June 2021 to June 2022).
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Figures

Figure 1: NCREIF cap rates

This �gures shows 4 of 60 cap rate indices constructed from NCREIF data as described from aggregated NOI and property values aggregated
across property types within geographic locations. Depicted are the time series for US - Nation, US States of New York and Texas, and NCREIF
region of the Northeast. The cap rates are computed quarterly. Source: NCREIF.

Figure 2: Statistical summaries for 60 NCREIF cap rate OLS

This �gure summarizes the results for the 60 OLS regressions corresponding of the form Cj, t = α + β1HPIj, t−4 + β2UEj, t−4 +
β3CreditSlopej=1,t−4 +β4MtgRatej=1,t−4 +β5CREchgo�j=1,t−4 + εt with j =1:60 supralocations (1:51 states, 1 US nation, 8 NCREIF regions.
The dependent variable Cj, t is the cap rate index for the j-th location. The �rst two independent variables, are j-th locational values for the
house price index returns and the unemployment rate. The last three independent variables are the corporate bond credit slope, the FHLMC 30
year conforming mortgage rate, and the CRE charge o� rate which are all captured at the National level (j = 1). The plot on the left shows
the composition of the signi�cance of each of the independent variables. The plot on the right shows the R-squared values. All regressions were
signi�cant as measured by the F-test.
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Figure 3: Economic proximity Euclidean distances for MSAs x supralocations

This �gure summarizes the distribution of Euclidean distanced economic proximities calculated on one date (quarter 93) between 402 MSAs and
60 supralocations. The x-axis corresponds to the 60 supralocations and the y-axis to the 402 MSAs.

Figure 4: Four synthetic cap rate indices

This �gure shows four synthetic cap rate indices (C̃) for 4 of 402 total MSAs. Depicted are Anaheim-Santa Ana-Irvine, CA; Ann Arbor, MI;
Austin-Round Rock, TX; and Boston, MA.
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Figure 5: Shannon's Entropy scores for 402 MSAs

This �gure provides the Shannon Entropy score for 402 MSAs. The score is de�ned as the negative logarithm of base 2 of the probability mass
function for categorical variables. In this context, the categorical variables are the MSAs and supralocations and the probability represents the
percentage of quarters of the j-th MSA in the k-th supralocation observed over 95 quarters. The plot on the left shows the scores x MSA locations.
The plot on the right aggregates the frequency of scores in bins of 0.25 from 2.75 to 5.

Figure 6: Supralocations corresponding to minimum economic proximity

This �gure summarizes the distribution of supralocations selected from the distancing procedure (1:60 as indicated in the legend) and mapped to
each of the 402 MSAs in each quarter in the sample period (95 quarters). The x-axis corresponds to the quarters and the y-axis to the MSAs.
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Figure 7: Cumulative cap rate distributions at origination

This �gure depicts the cumulative distributions of actual cap rates at origination and corresponding synthetic MSA level cap rates at origination
partitioned by the default indicator. The solid lines re�ects the cumulative distribution for the actual cap rates at origination, while the dotted
lines re�ect the synthetic cap rates at origination that corresponded the MSA level in which the property is located. The plot on the left shows
the comparison between actual and synthetic for the 24,089 loans that did not default. The plot on the right shows the comparison for the 1,013
loans in our sample that defaulted over the CMBS loan sample period Q1 2000 to Q2 2015. The x-axis shows cap rates in increments of 0.005; the
y-axis shows the proportion of loan counts; and the lines re�ect the cumulative sum of the proportional count of loans as a percent of total loans
in the category with corresponding cap rates at origination in the interval.

Figure 8: Locational mapping of CRE loan defaults

This �gure depicts the increasing granularity geographically contained in our data set which permits us to identify at the zip-code, CBD, MSA,
State, Regional and National levels. Source: Intex.
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Figure 9: Actual and predicted synthetic cap rates (National)

This �gure provides plots re�ecting actual and synthetic cap rates at the National level.

Figure 10: Statistical signi�cance 402 synthetic cap rate OLS

This �gure summarizes the results for the 402 OLS regressions corresponding of the form C̃k = α + β1HPIk, t−4 + β2UEk, t−4 +
β3CreditSlopej=1, t−4 + β4MtgRatej=1, t−4 + β5CREchgo�j=1, t−4 + εt with j ∈ [1, 60] supralocations and k ∈ [1, 402] MSAs. The plot
on the left shows the composition of the signi�cance of each of the independent variables normalized across all 402 OLS regressions. The plot on
the right shows the R-squared values for each of the 402 OLS regressions. All regressions were signi�cant as measured by the F-test.
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Figure 11: National SCXs (quarterly)

(a) Simple average SCX (December 2015-June 2022)

(b) Weighted Average SCX (weighted by MSA workforce, December

2019-June 2022)

This �gure shows the National 1 year forecast SCXs, quarterly. Figure (a.) depicts the National SCX from December 2015 through June 2022 as a
simple average, along with its standard deviation. Also depicted are the actual minimum and maximum MSA SCXs, for those periods, quarterly.
The vertical line in March 2021, separates the pre-Covid period from the current-intra-Covid period. Figure (b.) depicts weighted average SCXs,
where the weights are the percent of the US workforce associated with that MSA. Three series are depicted: all MSAs (National), the top 50% of
MSAs by eligible workforce percent of the total US workforce, and the bottom 50% of MSAs by eligible workforce percent of the total US workforce.
The lines are smoothed for presentation style.
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